Engineered neural tissue made using clinical-grade human neural stem cells supports regeneration in a long gap peripheral nerve injury model

Autor: Kulraj S. Bhangra, Adam G.E. Day, James B. Phillips, John Sinden, Melissa L. D. Rayner
Rok vydání: 2021
Předmět:
Zdroj: Acta biomaterialia. 135
ISSN: 1878-7568
Popis: A surgical autograft remains the clinical gold-standard therapy for gap repair following peripheral nerve injury, however, challenges remain with achieving full recovery and reducing donor-site morbidity. Engineered Neural Tissue (EngNT) manufactured using differentiated CTX0E03 human stem cells (EngNT-CTX) has been developed as a potential ‘off the shelf’ allogeneic autograft replacement. Ensheathed within a collagen membrane developed to facilitate biomechanical integration, EngNT-CTX was used to bridge a critical-length (15 mm) sciatic nerve gap injury in athymic nude rats. The effectiveness of EngNT-CTX was compared to an autograft using outcome measures that assessed neuronal regeneration and functional recovery at 8 and 16 weeks. At both time points EngNT-CTX restored electrophysiological nerve conduction and functional reinnervation of downstream muscles to the same extent as the autograft. Histological analysis confirmed that more motor neurons had successfully regenerated through the repair in EngNT-CTX in comparison to the autograft at 8 weeks, which was consistent with the electrophysiology, with the number of motor neurons similar in both groups by 16 weeks. The total number of neurons (motor + sensory) was greater in autografts than EngNT-CTX at 8 weeks, indicating that more sensory fibres may have sprouted in those animals at this time point. In conclusion, this study provides evidence to support the effectiveness of EngNT-CTX as a replacement for the nerve autograft, as the functional regeneration assessed through histological and electrophysiological outcome measures demonstrated equivalent performance. Statement of significance Following injury a peripheral nerve has the capacity to regenerate naturally, however, in the case of severe damage where there is a gap the current gold-standard microsurgical intervention is an autograft. This is associated with serious limitations including tissue availability and donor-site morbidity. Tissue engineering aims to overcome these limitations by building a construct from therapeutic cells and biomaterials as a means to mimic and replace the autograft. In this study engineered neural tissue (EngNT) was manufactured using human stem cells (CTX) to bridge a critical-length gap injury. When compared to the autograft in an animal model the EngNT-CTX construct restored function to an equivalent or greater extent.
Databáze: OpenAIRE