Comparative Study of Different Data Mining Techniques in Predicting Forest Fire in Lebanon and Mediterranean

Autor: Ali Karouni, Bassam Daya, Nizar Hamadeh, Pierre Chauvet
Přispěvatelé: Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d'Angers (UA), Université Libanaise
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: SAI Intelligent Systems Conference 2016 (IntelliSys 2016)
SAI Intelligent Systems Conference 2016 (IntelliSys 2016), Sep 2016, Londres, United Kingdom. pp.747-762, ⟨10.1007/978-3-319-56994-9_51⟩
Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016
Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016, pp.747-762, 2018, ⟨10.1007/978-3-319-56994-9_51⟩
Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016 ISBN: 9783319569932
DOI: 10.1007/978-3-319-56994-9_51⟩
Popis: International audience; Forest fire is one of the most complex phenomena which can cause great economic losses and make eco-environment seriously disordered. Forest fire has caused the loss of many green acres in Lebanon due to the lack of governmental policies in order to mange forest fires. This paper presents an overview of the exciting applications of data mining techniques in different fields. This study aims to predict forest fires in North Lebanon in order to reduce fire occurrence based on 4 meteorological parameters (Temperature, Humidity, Precipitation and Wind speed) using different data mining techniques: Neural networks, decision tree (J48), fuzzy logic, support vector machine (SVM) and linear discriminant analysis (LDA). A comparative study is then made to find the best performing technique tending to manage such a natural crisis. Decision tree (J48) recorded the best accuracy in forest fire prediction (97.8%).
Databáze: OpenAIRE