Lift up of Lowlands : beneficial use of dredged sediments to reverse land subsidence

Autor: Bruna R. F. Oliveira
Přispěvatelé: Wageningen University, Huub Rijnaarts, Tim Grotenhuis
Jazyk: angličtina
Rok vydání: 2017
Předmět:
DOI: 10.18174/387316
Popis: In this thesis, the beneficial use of dredged sediments to reverse land subsidence in lowlands and delta areas is explored. The major constraints for beneficial use of sediments are the contaminant concentrations, and the proper managing of supply and demand of sediments (Chapter 1). When sediments are transferred from waterways to upland conditions, a series of processes take place that transform the waterlogged sediments into aerated soils, a process known as ripening. To understand the relation between the sediments and the soils formed, physical/chemical and biological processes were studied at three scales: laboratory scale, mesoscale, and field scale. The knowledge obtained with these experiments can provide guidelines to effectively use dredged sediments to reverse land subsidence. In the laboratory experiments, the environmental conditions were controlled, leading to constant water content and optimal oxygen concentration for biological processes. In the mesoscale experiment, the environmental parameters such as wind, precipitation and temperature, were not controlled as the 1 m3 containers used for these experiments were placed outside, in open air conditions. Still, the water level could be monitored and controlled, and the subsidence of the dredged sediment could be monitored. In the field experiment, the environmental and filling conditions could not be controlled but the changes occurring in the deposit were monitored. In the first laboratory experiment (Chapter 2) the behaviour of dredged sediments with varying particle size distribution and organic matter content was studied. The dredged sediments were dewatered using suction chambers and then submitted to biochemical ripening during 141 days. The five types of dredged sediments had similar overall behaviour. The most significant observation was that most volume lost during dewatering and biochemical ripening was due to shrinkage and not to organic matter mineralization. Furthermore, the type of organic matter changed in the direction of humification, i.e., more stable compounds were formed. The soils formed from biochemical ripening of dredged sediments had very stable aggregates and the load-bearing capacity was enough to sustain cattle and tractors. The second laboratory experiment (Chapter 3) was designed to investigate the influence of mixing compost and the solid fraction of swine manure (low in nutrients) with dredged sediments on dewatering and biochemical ripening. When the supply of dredged sediments is too low to compensate for land subsidence, bio-wastes, such as compost and manure, can be mixed with the sediments to reverse land subsidence. The results of this experiment confirm that most volume lost during ripening was due to shrinkage and not due to organic matter mineralization. Adding compost or the solid fraction of manure to the dredged sediments enhances the changes in the type of organic matter and CO2 production, i.e., the addition results in increased rates of organic matter mineralization which is described in the literature as the priming effect. In addition, the undrained shear strength of the mixtures of sediments with compost or manure was three times higher than the measured values for the sediments alone, meaning that organic amendments will improve the characteristics of the soil formed from ripening of sediments. The mesoscale experiment (Chapter 4) was performed during 400 days in 1m3 containers which allowed to control the water level. Two scenarios were tested: upland deposits in which the sediments are allowed to dry; and underwater deposits in which the water level is always 2 cm above the sediments. It was expected that the upland deposit conditions would lead to a higher subsidence than the underwater conditions. However, subsidence of the sediments was very similar for the two scenarios. Also in these experiments it was observed that most subsidence could be attributed to shrinkage and not organic matter mineralization, and the type of organic matter changed in the direction of humification. Furthermore, the water balance indicated that evapotranspiration results in higher loss of water than drainage. Still, in this case the undrained shear strength after 400 days of experiment was not enough to sustain cattle or tractors even though it increased with time. The monitored field scale upland deposit of dredged sediments (Chapter 5) is located in the Wormer- en Jisperveld area – North Holland, the Netherlands. The deposit was filled in two stages reaching a maximum height of sediments of 195 cm. After 17 months of monitoring, the subsidence of the sediments was 119 cm to which an extra subsidence of 19.5 cm of the underlying soil due to the overburden pressure was added. The results observed in the upland deposit are in line with the laboratory and mesoscale results since subsidence could also be attributed to shrinkage and no significant changes in the organic matter content were observed. However, in the case of the upland deposit, the type of organic matter changed in the direction of humification during the first 8 months (March to November), then stabilized during 7 months (November to June), and changed in the direction of mineralization afterwards. The outcomes of this research indicate that dredged sediments have the potential to reverse land subsidence. This statement is supported by the consistent results showing that the decrease in volume of dredged sediments is caused by shrinkage and not to organic matter mineralization as traditionally reported (Chapters 2, 3, 4, and 5). In addition, in places where composted and stable bio-wastes are available, these can be added to dredged sediments to further reverse land subsidence. Still, in this case special attention should be given to the potential priming effect (Chapter 3). Finally it is recommended to adapt the current practices of disposal of dredged sediments in upland deposits, since 19.5 cm of subsidence observed for the underlying soil in the upland deposit (Chapter 5), was caused by the overburden pressure of the dredged sediment. From the point of view of avoiding/reversing land subsidence it is recommended to spread thin layers (in the order of cm) of sediments over the land, although this might lead to an increase in the time and costs for the stakeholders involved in dredging and in managing the water boards.
Databáze: OpenAIRE