Forecasting trends with asset prices

Autor: Ahmed Bel Hadj Ayed, Frédéric Abergel, Grégoire Loeper
Přispěvatelé: Chaire de finance quantitative (FiQuant), Mathématiques et Informatique pour la Complexité et les Systèmes (MICS), CentraleSupélec-CentraleSupélec, School of Mathematical Sciences [Clayton], Monash University [Clayton], CentraleSupélec
Rok vydání: 2015
Předmět:
Zdroj: Quantitative Finance
Quantitative Finance, Taylor & Francis (Routledge), 2016, 17 (3), pp.369-382. ⟨10.1080/14697688.2016.1206959⟩
ISSN: 1469-7688
1469-7696
DOI: 10.1080/14697688.2016.1206959⟩
Popis: In this paper, we consider a stochastic asset price model where the trend is an unobservable Ornstein Uhlenbeck process. We first review some classical results from Kalman filtering. Expectedly, the choice of the parameters is crucial to put it into practice. For this purpose, we obtain the likelihood in closed form, and provide two on-line computations of this function. Then, we investigate the asymptotic behaviour of statistical estimators. Finally, we quantify the effect of a bad calibration with the continuous time mis-specified Kalman filter. Numerical examples illustrate the difficulty of trend forecasting in financial time series.
Comment: 26 pages, 11 figures
Databáze: OpenAIRE