Viscoelastic and deformation characteristics of structurally different commercial topical systems
Autor: | Michael S. Roberts, Sarika Namjoshi, Yousuf H. Mohammed, Sangeeta Prakash, Maryam Dabbaghi, Jeffrey E. Grice, Bhavesh Panchal |
---|---|
Přispěvatelé: | Dabbaghi, Maryam, Namjoshi, Sarika, Panchal, Bhavesh, Grice, Jeffrey E., Prakash, Sangeeta, Roberts, Michael Stephen, Mohammed, Yousuf |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Materials science
topical semisolid products deformation characteristics Pharmaceutical Science viscoelastic properties Dynamic mechanical analysis Viscoelasticity Article Shear (sheet metal) RS1-441 Viscosity Brittleness Pharmacy and materia medica Rheology Dynamic modulus rheology critical quality attributes (CQAs) Deformation (engineering) Composite material power-law functions |
Zdroj: | Pharmaceutics, Vol 13, Iss 1351, p 1351 (2021) Pharmaceutics Volume 13 Issue 9 |
Popis: | Rheological characteristics and shear response have potential implication in defining the pharmaceutical equivalence, therapeutic equivalence, and perceptive equivalence of commercial topical products. Three creams (C1 and C3 as oil-in-water and C2 as water-in-oil emulsions), and two gels (G1 and G2 carbomer-based) were characterized using the dynamic range of controlled shear in steady-state flow and oscillatory modes. All products, other than C3, met the Critical Quality Attribute criteria for high zero-shear viscosity (η0) of 2.6 × 104 to 1.5 × 105 Pa∙s and yield stress (τ0) of 55 to 277 Pa. C3 exhibited a smaller linear viscoelastic region and lower η0 (2547 Pa∙s) and τ0 (2 Pa), consistent with lotion-like behavior. All dose forms showed viscoelastic solid behavior having a storage modulus (G′) higher than the loss modulus (G″) in the linear viscoelastic region. However, the transition of G′ > G″ to G″ > G′ during the continual strain increment was more rapid for the creams, elucidating a relatively brittle deformation, whereas these transitions in gels were more prolonged, consistent with a gradual disentanglement of the polymer network. In conclusion, these analyses not only ensure quality and stability, but also enable the microstructure to be characterized as being flexible (gels) or inelastic (creams). |
Databáze: | OpenAIRE |
Externí odkaz: |