Action-angle variables and a KAM theorem for b-Poisson manifolds

Autor: Anna Kiesenhofer, Geoffrey Scott, Eva Miranda
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Differential equations
Pure mathematics
Integrable system
General Mathematics
Dynamical Systems (math.DS)
DEFORMATIONS
Poisson distribution
01 natural sciences
KAM theorem
symbols.namesake
SYSTEMS
0103 physical sciences
FOS: Mathematics
Poisson manifolds
Mathematics - Dynamical Systems
0101 mathematics
Mathematics::Symplectic Geometry
Action-angle variables
Mathematics
Symplectic manifolds
Sistmes dinàmics
Kolmogorov–Arnold–Moser theorem
Applied Mathematics
010102 general mathematics
Matemàtiques i estadística::Equacions diferencials i integrals::Sistemes dinàmics [Àrees temàtiques de la UPC]
Action-angle coordinates
Mathematics::Geometric Topology
Mathematics - Symplectic Geometry
symbols
Integrable systems
Symplectic Geometry (math.SG)
010307 mathematical physics
Mathematics::Differential Geometry
Matemàtiques i estadística::Geometria [Àrees temàtiques de la UPC]
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
Popis: In this article we prove an action-angle theorem for b-integrable systems on b-Poisson manifolds improving the action-angle theorem contained in [LMV11] for general Poisson manifolds in this setting. As an application, we prove a KAM-type theorem for b-Poisson manifolds.
Comment: 24 pages, 3 figures, the KAM theorem has been improved, minor corrections
Databáze: OpenAIRE