Quasi-conformal mappings
Autor: | Hervé Pajot |
---|---|
Přispěvatelé: | Rolland, Ariane, Blanc-Centi, Léa, Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut Fourier (IF ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Pure mathematics
Classical theory Measurable Riemann mapping theorem Hyperbolic geometry 010102 general mathematics Conformal map [MATH] Mathematics [math] 01 natural sciences Complex dynamics Metric space 0103 physical sciences 010307 mathematical physics 0101 mathematics [MATH]Mathematics [math] Complex plane Mathematics |
Zdroj: | Metrical and dynamical aspects in complex analysis. Blanc-Centi, Léa. Metrical and dynamical aspects in complex analysis., 2195, Springer, pp.115-140, 2017, Lecture Notes in Mathematics, 978-3-319-65836-0 Lecture Notes in Mathematics ISBN: 9783319658360 |
Popis: | International audience; In this chapter, we first give a brief overview of the classical theory of quasiconformal mappings in the complex plane and then we explain how to extend it in general metric spaces (under geometric assumptions). Applications to complex dynamics and to (complex) hyperbolic geometry are also discussed. |
Databáze: | OpenAIRE |
Externí odkaz: |