Word Similarity Based Model for Tweet Stream Prospective Notification

Autor: Mohand Boughanem, Abdelhamid Chellal, Bernard Dousset
Přispěvatelé: Recherche d’Information et Synthèse d’Information (IRIT-IRIS), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III - Paul Sabatier (UT3), Systèmes d’Informations Généralisées (IRIT-SIG), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université Toulouse - Jean Jaurès - UT2J (FRANCE), Université Toulouse 1 Capitole - UT1 (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Advances in Information Retrieval. ECIR 2017
ECIR 2017 39th European Conference on Information Retrieval
ECIR 2017 39th European Conference on Information Retrieval, Apr 2017, Aberdeen, United Kingdom. pp.655-661
HAL
Lecture Notes in Computer Science ISBN: 9783319566078
ECIR
Popis: International audience; The prospective notification on tweet streams is a challenge task in which the user wishes to receive timely, relevant, and non-redundant update notification to remain up-to-date. To be effective the system attempts to optimize the aforementioned properties (timeliness, relevance, novelty and redundancy) and find a trade-off between pushing too many and pushing too few tweets. We propose an adaptation of the extended Boolean model based on word similarity to estimate the relevance score of tweets. We take advantage of the word2vec model to capture the similarity between query terms and tweet terms. Experiments on the TREC MB RTF 2015 dataset show that our approach outperforms all considered baselines.
Databáze: OpenAIRE