Faber-Krahn and Lieb-type inequalities for the composite membrane problem

Autor: Giovanni Cupini, Eugenio Vecchi
Přispěvatelé: Cupini G., Vecchi E.
Rok vydání: 2019
Předmět:
Zdroj: Communications on Pure & Applied Analysis. 18:2679-2691
ISSN: 1553-5258
DOI: 10.3934/cpaa.2019119
Popis: The classical Faber-Krahn inequality states that, among all domains with given measure, the ball has the smallest first Dirichlet eigenvalue of the Laplacian. Another inequality related to the first eigenvalue of the Laplacian has been proved by Lieb in 1983 and it relates the first Dirichlet eigenvalues of the Laplacian of two different domains with the first Dirichlet eigenvalue of the intersection of translations of them. In this paper we prove the analogue of Faber-Krahn and Lieb inequalities for the composite membrane problem.
Databáze: OpenAIRE