Gupta-Bleuler quantization for linearized gravity in de Sitter spacetime

Autor: Jean-Pierre Gazeau, Mohammad Enayati, Anzhong Wang, Hamed Pejhan
Přispěvatelé: AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
quantum gravity: linear
Canonical quantization
symmetry: space-time
gauge/gravity duality
Spacetime symmetries
FOS: Physical sciences
anomaly
General Relativity and Quantum Cosmology (gr-qc)
01 natural sciences
General Relativity and Quantum Cosmology
Quantization (physics)
gravitation: linear
Linearized gravity
gravitation: weak field
isometry
quantization: canonical
0103 physical sciences
general relativity
space-time: de Sitter
String theory
commutation relations
Quantum field theory
010306 general physics
Gauge symmetry
Mathematical physics
Physics
010308 nuclear & particles physics
Graviton
symmetry: gauge
energy: operator
gravitation: field theory
quantum gravity
graviton
covariance
vector: Killing
[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]
Quantum gravity
transformation: gauge
operator: Casimir
Zdroj: Physical Review D
Physical Review D, American Physical Society, 2019, 100 (6), pp.066012. ⟨10.1103/PhysRevD.100.066012⟩
Phys.Rev.D
Phys.Rev.D, 2019, 100 (6), pp.066012. ⟨10.1103/PhysRevD.100.066012⟩
ISSN: 1550-7998
1550-2368
DOI: 10.1103/PhysRevD.100.066012⟩
Popis: In a recent Letter, we have pointed out that the linearized Einstein gravity in de Sitter (dS) spacetime besides the spacetime symmetries generated by the Killing vectors and the evident gauge symmetry also possesses a hitherto `hidden' local (gauge-like) symmetry which becomes anomalous on the quantum level. This gauge-like anomaly makes the theory inconsistent and must be canceled at all costs. In this companion paper, we first review our argument and discuss it in more detail. We argue that the cancelation of this anomaly makes it impossible to preserve dS symmetry in linearized quantum gravity through the usual canonical quantization in a consistent manner. Then, demanding that all the classical symmetries to survive in the quantized theory, we set up a coordinate-independent formalism \`{a} \emph{la} Gupta-Bleuler which allows for preserving the (manifest) dS covariance in the presence of the gauge and the gauge-like invariance of the theory. On this basis, considering a new representation of the canonical commutation relations, we present a graviton quantum field on dS space, transforming correctly under isometries, gauge transformations, and gauge-like transformations, which acts on a state space containing a vacuum invariant under all of them. Despite the appearance of negative norm states in this quantization scheme, the energy operator is positive in all physical states, and vanishes in the vacuum.
Comment: 19 pages, no figure, version accepted for publication in Physical Review D
Databáze: OpenAIRE