Gupta-Bleuler quantization for linearized gravity in de Sitter spacetime
Autor: | Jean-Pierre Gazeau, Mohammad Enayati, Anzhong Wang, Hamed Pejhan |
---|---|
Přispěvatelé: | AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
quantum gravity: linear
Canonical quantization symmetry: space-time gauge/gravity duality Spacetime symmetries FOS: Physical sciences anomaly General Relativity and Quantum Cosmology (gr-qc) 01 natural sciences General Relativity and Quantum Cosmology Quantization (physics) gravitation: linear Linearized gravity gravitation: weak field isometry quantization: canonical 0103 physical sciences general relativity space-time: de Sitter String theory commutation relations Quantum field theory 010306 general physics Gauge symmetry Mathematical physics Physics 010308 nuclear & particles physics Graviton symmetry: gauge energy: operator gravitation: field theory quantum gravity graviton covariance vector: Killing [PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] Quantum gravity transformation: gauge operator: Casimir |
Zdroj: | Physical Review D Physical Review D, American Physical Society, 2019, 100 (6), pp.066012. ⟨10.1103/PhysRevD.100.066012⟩ Phys.Rev.D Phys.Rev.D, 2019, 100 (6), pp.066012. ⟨10.1103/PhysRevD.100.066012⟩ |
ISSN: | 1550-7998 1550-2368 |
DOI: | 10.1103/PhysRevD.100.066012⟩ |
Popis: | In a recent Letter, we have pointed out that the linearized Einstein gravity in de Sitter (dS) spacetime besides the spacetime symmetries generated by the Killing vectors and the evident gauge symmetry also possesses a hitherto `hidden' local (gauge-like) symmetry which becomes anomalous on the quantum level. This gauge-like anomaly makes the theory inconsistent and must be canceled at all costs. In this companion paper, we first review our argument and discuss it in more detail. We argue that the cancelation of this anomaly makes it impossible to preserve dS symmetry in linearized quantum gravity through the usual canonical quantization in a consistent manner. Then, demanding that all the classical symmetries to survive in the quantized theory, we set up a coordinate-independent formalism \`{a} \emph{la} Gupta-Bleuler which allows for preserving the (manifest) dS covariance in the presence of the gauge and the gauge-like invariance of the theory. On this basis, considering a new representation of the canonical commutation relations, we present a graviton quantum field on dS space, transforming correctly under isometries, gauge transformations, and gauge-like transformations, which acts on a state space containing a vacuum invariant under all of them. Despite the appearance of negative norm states in this quantization scheme, the energy operator is positive in all physical states, and vanishes in the vacuum. Comment: 19 pages, no figure, version accepted for publication in Physical Review D |
Databáze: | OpenAIRE |
Externí odkaz: |