On the total order of reducibility of a pencil of algebraic plane curves
Autor: | Guillaume Chèze, Laurent Busé |
---|---|
Přispěvatelé: | Geometry, algebra, algorithms (GALAAD), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2011 |
Předmět: |
FOS: Computer and information sciences
Computer Science - Symbolic Computation Spectrum of a rational function Plane curve [MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC] Physics::Medical Physics 010103 numerical & computational mathematics Symbolic Computation (cs.SC) Commutative Algebra (math.AC) 01 natural sciences Combinatorics Mathematics - Algebraic Geometry Mathematics::Algebraic Geometry Algebraic surface FOS: Mathematics Real algebraic geometry 0101 mathematics Algebraic Geometry (math.AG) Mathematics::Symplectic Geometry ComputingMilieux_MISCELLANEOUS Pencil (mathematics) Mathematics Pencil of algebraic curves [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC] Circular algebraic curve Algebra and Number Theory Butterfly curve (algebraic) 010102 general mathematics Mathematics - Commutative Algebra Newtonʼs polygon Family of curves Algebraic de Rhamʼs cohomology [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] Algebraic curve |
Zdroj: | Journal of Algebra Journal of Algebra, Elsevier, 2011, 341 (1), pp.256-278. ⟨10.1016/j.jalgebra.2011.06.006⟩ Journal of Algebra, 2011, 341 (1), pp.256-278. ⟨10.1016/j.jalgebra.2011.06.006⟩ |
ISSN: | 0021-8693 1090-266X |
DOI: | 10.1016/j.jalgebra.2011.06.006 |
Popis: | International audience; In this paper, the problem of bounding the number of reducible curves in a pencil of algebraic plane curves is addressed. Unlike most of the previous related works, each reducible curve of the pencil is here counted with its appropriate multiplicity. It is proved that this number of reducible curves, counted with multiplicity, is bounded by d^2-1 where d is the degree of the pencil. Then, a sharper bound is given by taking into account the Newton's polygon of the pencil. |
Databáze: | OpenAIRE |
Externí odkaz: |