Robustness and sensitivity of a blueprint for on-farm estimation of dairy cow energy balance

Autor: M G G Chagunda, Vivi M. Thorup, Nicolas Friggens, Amélie Fischer, Martin Riis Weisbjerg
Přispěvatelé: Modélisation Systémique Appliquée aux Ruminants (MoSAR), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Auning Data, Scotland's Rural College (SRUC), Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage [Rennes] (PEGASE), Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institut de l'élevage (IDELE), Department of Animal Science, AU Foulum, Aarhus University [Aarhus], Scotland's Rural College (SCUR), AGROCAMPUS OUEST-Institut National de la Recherche Agronomique (INRA), Institut de l'Elevage, Aarhus University, AgroParisTech-Institut National de la Recherche Agronomique (INRA)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
0301 basic medicine
[SDV.SA]Life Sciences [q-bio]/Agricultural sciences
condition scoring
Energy balance
état corporel
body reserve
robustness
bilan énergétique
Lactation
dairy cows
Mathematics
2. Zero hunger
Animal biology
precision agriculture
[SDV.BA]Life Sciences [q-bio]/Animal biology
modèle d'estimation
food and beverages
04 agricultural and veterinary sciences
weight mass
Body reserve
Decision support
On-farm
Precision livestock
agriculture de précision
Agricultural sciences
Milk
medicine.anatomical_structure
réserve corporelle
vache laitière
Female
exploitation agricole
poids
Smoothing
Farms
decision support
Milking
modelling
03 medical and health sciences
Animal science
Body condition score
Robustness (computer science)
Biologie animale
Genetics
medicine
Animals
modélisation
holdings
Body Weight
0402 animal and dairy science
Automatic milking
040201 dairy & animal science
energy balance
robustesse
030104 developmental biology
Scotland
Herd
Cattle
Animal Science and Zoology
precision livestock
Energy Metabolism
Sciences agricoles
outil d'aide à la décision
analyse de sensibilité
on-farm
Food Science
Zdroj: Journal of Dairy Science 7 (101), 6002-6018. (2018)
Journal of Dairy Science
Journal of Dairy Science, American Dairy Science Association, 2018, 101 (7), pp.6002-6018. ⟨10.3168/jds.2017-14290⟩
Thorup, V M, Chagunda, M G G, Fischer, A, Weisbjerg, M R & Friggens, N C 2018, ' Robustness and sensitivity of a blueprint for on-farm estimation of dairy cow energy balance ', Journal of Dairy Science, vol. 101, no. 7, pp. 6002-6018 . https://doi.org/10.3168/jds.2017-14290
ISSN: 0022-0302
DOI: 10.3168/jds.2017-14290⟩
Popis: Excessive negative energy balance (EB) has been associated with decreased reproductive performance and increased risk of lameness and metabolic diseases. On-farm, automated EB estimates for individual cows would enable dairy farmers to detect excessive negative EB early and act to minimize its extent and duration by altering feeding. Previously, we have shown that EB can be estimated from frequent measurements of body weight (BW) and body condition score (BCS) changes, referred to as EBbody. In this study, we investigated the robustness and sensitivity of the EBbody method to assess its genericity and on-farm applicability. We used 5 data sets with BW of lactating cows (name of data set in parenthesis): 65 Holstein cows in a French feeding trial (INRA); 6 Holstein cows in a British feeding trial (Friggens); 31 Holstein cows and 17 Jersey cows in a Danish feeding trial (DCRC); 140 Holstein cows in a British feeding trial (Scotland's Rural College, SRUC); and 1,592 Holstein cows on 9 Danish farms with milking robots (automatic milking system). We used the INRA and Friggens data sets to develop a dynamic formula to correct BW for increasing residual gut-fill (RGF) during early lactation. With the DCRC data, we tested the effect of smoothing parameters and weighing frequency on EBbody. Also, 2 robustness tests were performed using the SRUC data to test the effect of diet change on BW and the automatic milking system data to test the effect of farm on BW variation. Finally, we combined the results into a blueprint describing different ways to calculate EBbody depending on the purpose and on the availability of BCS. The dynamic RGF adjustment resulted in a lower empty BW during early lactation than that obtained with the previously used constant RGF. The double-exponential smoothing method used to correct for meal-related gut-fill was robust to choice of smoothing parameters. Cows should be weighed at least once every 4 d during early lactation to capture the duration of negative EBbody. Our EBbody method proved robust to diet changes. Finally, although cow BW varied significantly between farms, the quantile regression smoothing of BW did not bias the estimation of weight differences between herds. In conclusion, these results validate the applicability of the EBbody method to estimate EB across a range of farm conditions, and we provided a blueprint that enables the estimation of EBbody for individual cows on-farm using only frequent BW, in combination with BCS when available.
Databáze: OpenAIRE