Experimental contribution to the corium thermodynamic modelling – The U–Zr–Al–Ca–Si–O system
Autor: | A. Quaini, T. Alpettaz, Fiqiri Hodaj, S. Gosse, E. Brackx, Renaud Domenger, C. Gueneau, A. Chocard |
---|---|
Přispěvatelé: | Laboratoire de Modélisation, Thermodynamique et Thermochimie (LM2T), Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), Département de Physico-Chimie (DPC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Département de Physico-Chimie (DPC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Métallographie et Analyse Chimique (LMAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Materials science
Nuclear fuel Spinodal decomposition Uranium dioxide Zirconium alloy Thermodynamics 02 engineering and technology [CHIM.MATE]Chemical Sciences/Material chemistry Nuclear reactor 021001 nanoscience & nanotechnology Corium 7. Clean energy 01 natural sciences 010305 fluids & plasmas law.invention chemistry.chemical_compound Surface coating Nuclear Energy and Engineering chemistry 13. Climate action law 0103 physical sciences 0210 nano-technology Energy source |
Zdroj: | Annals of Nuclear Energy Annals of Nuclear Energy, 2016, 93, pp.43-49. ⟨10.1016/j.anucene.2016.01.043⟩ Annals of Nuclear Energy, Elsevier Masson, 2016, 93, pp.43-49. ⟨10.1016/j.anucene.2016.01.043⟩ |
ISSN: | 0306-4549 |
DOI: | 10.1016/j.anucene.2016.01.043⟩ |
Popis: | International audience; During a severe accident in a nuclear reactor, extreme temperatures may be reached (T>2500 K). In these conditions, the nuclear fuel may react with the Zircaloy cladding and then with the steel vessel, forming a mixture of solid-liquid phases called in-vessel corium. In the worst scenario, this mixture may penetrate the vessel and reach the concrete underneath the reactor. In order to develop the TAF-ID thermodynamic database (www.oecd-nea.orgiscienceitaf-id) on nuclear fuels and to predict the high temperature behaviour of the corium + concrete system, new high temperature thermodynamic data are needed. The LM2T at CEA Saclay centre started an experimental campaign of phase equilibria measurements at high temperature (up to 2600 K) on interesting corium sub-systems. In particular, a heat treatment at 2500 K has been performed on two prototypic ex-vessel corium samples (within the U-Zr-Al-Ca-Si-O system) with different amounts of CaO and SiO2. The results show that depending on the SiO2-content, the final configuration of the samples can be significantly different. The sample with the higher CaO-content showed a dendritic structure representative of a single quenched liquid phase, whilst the sample richer in SiO2 exhibited a microstructure which suggests the presence of a liquid miscibility gap. Furthermore a new laser heating setup has been conceived. This technique allows very high temperature measures (T > 3000 K) limiting the interactions between the sample and the surroundings. (C) 2016 Elsevier Ltd. All rights reserved. |
Databáze: | OpenAIRE |
Externí odkaz: |