Topology of the Nodal Set of Random Equivariant Spherical Harmonics on 𝕊3

Autor: Steve Zelditch, Junehyuk Jung
Rok vydání: 2020
Předmět:
Zdroj: International Mathematics Research Notices. 2021:8521-8549
ISSN: 1687-0247
1073-7928
DOI: 10.1093/imrn/rnz348
Popis: We show that real and imaginary parts of equivariant spherical harmonics on $S^3$ have almost surely a single nodal component. Moreover, if the degree of the spherical harmonic is $N$ and the equivariance degree is $m$, then the expected genus is proportional to $m \left(\frac{N^2 - m^2}{2} + N\right) $. Hence if $\frac{m}{N}= c $ for fixed $0 < c < 1$, the genus has order $N^3$.
15 pages
Databáze: OpenAIRE