On Distinct Distances Between a Variety and a Point Set
Autor: | McLaughlin, Bryce, Omar, Mohamed |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | The Electronic Journal of Combinatorics. 29 |
ISSN: | 1077-8926 |
Popis: | We consider the problem of determining the number of distinct distances between two point sets in $\mathbb{R}^2$ where one point set $\mathcal{P}_1$ of size $m$ lies on a real algebraic curve of fixed degree $r$, and the other point set $\mathcal{P}_2$ of size $n$ is arbitrary. We prove that the number of distinct distances between the point sets, $D(\mathcal{P}_1,\mathcal{P}_2)$, satisfies $D(\mathcal{P}_1,\mathcal{P}_2) = \Omega(m^{1/2}n^{1/2}\log^{-1/2}n)$ when $m = \Omega(n^{1/2}\log^{-1/3}n)$ and $D(\mathcal{P}_1,\mathcal{P}_2) = \Omega(n^{1/2} m^{1/3})$ when $m=O(n^{1/2}\log^{-1/3}n)$ This generalizes work of Pohoata and Sheffer, and complements work of Pach and de Zeeuw. Comment: 8 pages |
Databáze: | OpenAIRE |
Externí odkaz: |