Kalman filter-based subspace identification for operational modal analysis under unmeasured periodic excitation

Autor: Szymon Greś, Laurent Mevel, Michael Döhler, Palle Andersen
Přispěvatelé: Aalborg University [Denmark] (AAU), Statistical Inference for Structural Health Monitoring (I4S), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Département Composants et Systèmes (COSYS), Université Gustave Eiffel-Université Gustave Eiffel, Structural Vibration Solutions (SVIBS)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Mechanical Systems and Signal Processing
Mechanical Systems and Signal Processing, Elsevier, 2021, 146, pp.106996. ⟨10.1016/j.ymssp.2020.106996⟩
Greś, S, Döhler, M, Andersen, P & Mevel, L 2021, ' Kalman filter-based subspace identification for operational modal analysis under unmeasured periodic excitation ', Mechanical Systems and Signal Processing, vol. 146, 106996 . https://doi.org/10.1016/j.ymssp.2020.106996
Mechanical Systems and Signal Processing, 2021, 146, pp.106996. ⟨10.1016/j.ymssp.2020.106996⟩
ISSN: 0888-3270
1096-1216
DOI: 10.1016/j.ymssp.2020.106996⟩
Popis: International audience; The modes of linear time invariant mechanical systems can be estimated from output-only vibration measurements under ambient excitation conditions with subspace-based system identification methods. In the presence of additional unmeasured periodic excitation, for example due to rotating machinery, the measurements can be described by a state-space model where the periodic input dynamics appear as a subsystem in addition to the structural system of interest. While subspace identification is still consistent in this case, the periodic input may render the modal parameter estimation difficult, and periodic modes often disturb the estimation of close structural modes. The aim of this work is to develop a subspace identification method for the estimation of the structural parameters while rejecting the influence of the periodic input. In the proposed approach, the periodic information is estimated from the data with a non-steady state Kalman filter, and then removed from the original output signal by an orthogonal projection. Consequently, the parameters of the periodic subsystem are rejected from the estimates, and it is shown that the modes of the structural system are consistently estimated. Furthermore, standard data analysis procedures, like the stabilization diagram, are easier to interpret. The proposed method is validated on Monte Carlo simulations and applied to both a laboratory example and a full-scale structure in operation.
Databáze: OpenAIRE