Antistrange meson-baryon interaction in hot and dense nuclear matter

Autor: Daniel Cabrera, Laura Tolos, Elena Bratkovskaya, Jörg Aichelin
Přispěvatelé: Laboratoire SUBATECH Nantes (SUBATECH), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Nantes (UN)-Mines Nantes (Mines Nantes)
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Physical Review C
Physical Review C, American Physical Society, 2014, 90 (5), pp.055207. ⟨10.1103/PhysRevC.90.055207⟩
ISSN: 2469-9985
2469-9993
Popis: We present a study of in-medium cross sections and (off-shell) transition rates for the most relevant binary reactions for strange pseudoscalar meson production close to threshold in heavy-ion collisions at FAIR energies. Our results rely on a chiral unitary approach in coupled channels which incorporates the $s$- and $p$-waves of the kaon-nucleon interaction. The formalism, which is modified in the hot and dense medium to account for Pauli blocking effects, mean-field binding on baryons, and pion and kaon self-energies, has been improved to implement full unitarization and self-consistency for both the $s$- and $p$-wave interactions at finite temperature and density. This gives access to in-medium amplitudes in several elastic and inelastic coupled channels with strangeness content $S=-1$. The obtained total cross sections mostly reflect the fate of the $\Lambda(1405)$ resonance, which melts in the nuclear environment, whereas the off-shell transition probabilities are also sensitive to the in-medium properties of the hyperons excited in the $p$-wave amplitudes [$\Lambda$, $\Sigma$ and $\Sigma^*(1385)$]. The single-particle potentials of these hyperons at finite momentum, density and temperature are also discussed in connection with the pertinent scattering amplitudes. Our results are the basis for future implementations in microscopic transport approaches accounting for off-shell dynamics of strangeness production in nucleus-nucleus collisions.
Comment: 33 pages, 7 figures; enhanced discussion in Sec. 3; order of presentation of results modified in Sec. 4; updated reference list; corrected typos and wording; version to match publication in Phys. Rev. C
Databáze: OpenAIRE