Convergence analysis of fitted numerical method for a singularly perturbed nonlinear Volterra integro-differential equation with delay
Autor: | Gabil M. Amiraliyev, Ilhame Amirali, Ömer Yapman |
---|---|
Přispěvatelé: | EBYÜ, Fen Edebiyat Fakültesi |
Rok vydání: | 2019 |
Předmět: |
Volterra delay-integro-differential equation
Applied Mathematics Numerical analysis Uniform convergence Perturbation (astronomy) 010103 numerical & computational mathematics Finite difference method 01 natural sciences Quadrature (mathematics) 010101 applied mathematics Computational Mathematics Nonlinear system Integro-differential equation Applied mathematics Initial value problem 0101 mathematics Remainder Singular perturbation Mathematics |
Zdroj: | Journal of Computational and Applied Mathematics. 355:301-309 |
ISSN: | 0377-0427 |
DOI: | 10.1016/j.cam.2019.01.026 |
Popis: | Yapman, Omer/0000-0003-3117-2932 WOS: 000463302400022 In this paper, the initial value problem for a quasilinear singularly perturbed delay Volterra integro-differential equation was considered. By the method of integral identities with the use of exponential basis functions and interpolating quadrature rules with the weight and remainder term in integral form, a fitted difference scheme is constructed and analysed. It is shown that the method displays first order uniform convergence in perturbation parameter. Some numerical results are given to confirm the theoretical analysis. (C) 2019 Elsevier B.V. All rights reserved. |
Databáze: | OpenAIRE |
Externí odkaz: |