Convergence analysis of fitted numerical method for a singularly perturbed nonlinear Volterra integro-differential equation with delay

Autor: Gabil M. Amiraliyev, Ilhame Amirali, Ömer Yapman
Přispěvatelé: EBYÜ, Fen Edebiyat Fakültesi
Rok vydání: 2019
Předmět:
Zdroj: Journal of Computational and Applied Mathematics. 355:301-309
ISSN: 0377-0427
DOI: 10.1016/j.cam.2019.01.026
Popis: Yapman, Omer/0000-0003-3117-2932 WOS: 000463302400022 In this paper, the initial value problem for a quasilinear singularly perturbed delay Volterra integro-differential equation was considered. By the method of integral identities with the use of exponential basis functions and interpolating quadrature rules with the weight and remainder term in integral form, a fitted difference scheme is constructed and analysed. It is shown that the method displays first order uniform convergence in perturbation parameter. Some numerical results are given to confirm the theoretical analysis. (C) 2019 Elsevier B.V. All rights reserved.
Databáze: OpenAIRE