Popis: |
Wearable, point-of-care diagnostics, and biosensors are on the verge of bringing transformative changes in detection, management, and treatment of cancer. Bioinspired materials with new forms and functions have frequently been used, in both translational and commercial spaces, to fabricate such diagnostic platforms. Engineered from organic or inorganic molecules, bioinspired systems are naturally equipped with biorecognition and stimuli-sensitive properties. Mechanisms of action of bioinspired materials are deeply connected with thermodynamically or kinetically controlled self-assembly at the molecular and supramolecular levels. Thus, integration of bioinspired materials into wearable devices, either as triggers or sensors, brings about unique device properties usable for detection, capture, or rapid readout for an analyte of interest. In this review, we present the basic principles and mechanisms of action of diagnostic devices engineered from bioinspired materials, describe current advances, and discuss future trends of the field, particularly in the context of cancer. |