Photon-assisted tunneling with non-classical light

Autor: Julien Gabelli, J. R. Souquet, Pascal Simon, Matthew J. Woolley, Aashish A. Clerk
Rok vydání: 2014
Předmět:
Zdroj: Nature Communications
DOI: 10.48550/arxiv.1408.1128
Popis: Among the most exciting recent advances in the field of superconducting quantum circuits is the ability to coherently couple microwave photons in low-loss cavities to quantum electronic conductors. These hybrid quantum systems hold great promise for quantum information-processing applications; even more strikingly, they enable exploration of new physical regimes. Here we study theoretically the new physics emerging when a quantum electronic conductor is exposed to nonclassical microwaves (for example, squeezed states, Fock states). We study this interplay in the experimentally relevant situation where a superconducting microwave cavity is coupled to a conductor in the tunnelling regime. We find that the conductor acts as a nontrivial probe of the microwave state: the emission and absorption of photons by the conductor is characterized by a nonpositive definite quasi-probability distribution, which is related to the Glauber–Sudarshan P-function of quantum optics. These negative quasi-probabilities have a direct influence on the conductance of the conductor.
Coherently coupling microwave photons to quantum electronic conductors could provide a useful platform for quantum information processing. Souquet et al. now theoretically demonstrate that such systems can also act as sensitive probes of the quantum properties of non-classical microwave radiation.
Databáze: OpenAIRE
načítá se...