Explicit inverse of nonsingular Jacobi matrices

Autor: M. J. Jiménez, A. M. Encinas
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. MAPTHE - Anàlisi matricial i Teoria Discreta del Potencial
Jazyk: angličtina
Rok vydání: 2019
Předmět:
15B99
31E05
39A06

0211 other engineering and technologies
Inverse
0102 computer and information sciences
02 engineering and technology
Matrius (Matemàtica)
01 natural sciences
law.invention
symbols.namesake
Matrix (mathematics)
Matrices
law
Tridiagonal matrices
matrix theory
FOS: Mathematics
Discrete Mathematics and Combinatorics
Applied mathematics
Mathematics - Combinatorics
Boundary value problem
Uniqueness
Mathematics - Numerical Analysis
Jacobi method
Second order linear difference equations
Sturm–Liouville boundary value problems
Mathematics
Tridiagonal matrix
Applied Mathematics
Operator (physics)
15 Linear and multilinear algebra
matrix theory [Classificació AMS]
15 Linear and multilinear algebra [Classificació AMS]
Discrete Schrödinger operator
021107 urban & regional planning
39 Difference and functional equations::39A Difference equations [Classificació AMS]
Mathematics - Rings and Algebras
Numerical Analysis (math.NA)
31 Potential theory [Classificació AMS]
Invertible matrix
010201 computation theory & mathematics
Rings and Algebras (math.RA)
Chebyshev functions and polynomials
Equacions diferencials lineals
symbols
Differential equations
Linear

Combinatorics (math.CO)
Matemàtiques i estadística::Equacions diferencials i integrals::Equacions en diferències [Àrees temàtiques de la UPC]
Schrödinger's cat
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
DOI: 10.1016/j.dam.2019.03.005
Popis: We present here the necessary and sufficient conditions for the invertibility of tridiagonal matrices, commonly named Jacobi matrices, and explicitly compute their inverse. The techniques we use are related with the solution of Sturm-Liouville boundary value problems associated to second order linear difference equations. These boundary value problems can be expressed throughout a discrete Schr\"odinger operator and their solutions can be computed using recent advances in the study of linear difference equations. The conditions that ensure the uniqueness solution of the boundary value problem lead us to the invertibility conditions for the matrix, whereas the solutions of the boundary value problems provides the entries of the inverse matrix.
Comment: The article will appear in Discrete Applied Mathematics
Databáze: OpenAIRE