A second-order curvilinear to Cartesian transformation of immersed interfaces and boundaries. Application to fictitious domains and multiphase flows

Autor: Stéphane P. Vincent, Jean-Paul Caltagirone, Arthur Sarthou
Přispěvatelé: Transferts, écoulements, fluides, énergétique (TREFLE), Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2011
Předmět:
Curvilinear grids
General Computer Science
fictitious domains
Geometry
01 natural sciences
[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]
010305 fluids & plasmas
Regular grid
law.invention
multiphase flows
Physics::Fluid Dynamics
symbols.namesake
Front Tracking
law
0103 physical sciences
structured Cartesian grids
Cartesian coordinate system
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
0101 mathematics
ComputingMethodologies_COMPUTERGRAPHICS
Mathematics
VOF
Curvilinear coordinates
Heaviside step function
grid transformation
Mathematical analysis
General Engineering
Eulerian path
Level-Set
Immersed boundary method
Grid
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
010101 applied mathematics
Mesh generation
symbols
[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
Zdroj: Computers and Fluids
Computers and Fluids, Elsevier, 2010, 46 (1), pp.422-428. ⟨10.1016/j.compfluid.2010.11.008⟩
ISSN: 0045-7930
DOI: 10.1016/j.compfluid.2010.11.008
Popis: International audience; A global methodology dealing with fictitious domains of all kinds on orthogonal curvilinear grids is presented. The main idea is to transform the curvilinear workframe and its associated elements (velocity, immersed interfaces...) into a Cartesian grid. On such a grid, many operations can be performed much faster than on curvilinear grids. The method is coupled with a Thread Ray-casting algorithm which work on Cartesian grids only. This algorithm computes quickly the Heaviside function related to the interior of an object on an Eulerian grid. The approach is also coupled with an immersed boundary method ($L^2$-penalty method) or with phase advection with VOF-PLIC, VOF-TVD, Front-tracking or Level-set methods. Applications, convergence and speed tests are performed for shape initializations, immersed boundary methods, and interface tracking.
Databáze: OpenAIRE