A second-order curvilinear to Cartesian transformation of immersed interfaces and boundaries. Application to fictitious domains and multiphase flows
Autor: | Stéphane P. Vincent, Jean-Paul Caltagirone, Arthur Sarthou |
---|---|
Přispěvatelé: | Transferts, écoulements, fluides, énergétique (TREFLE), Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2011 |
Předmět: |
Curvilinear grids
General Computer Science fictitious domains Geometry 01 natural sciences [SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] 010305 fluids & plasmas Regular grid law.invention multiphase flows Physics::Fluid Dynamics symbols.namesake Front Tracking law 0103 physical sciences structured Cartesian grids Cartesian coordinate system [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] 0101 mathematics ComputingMethodologies_COMPUTERGRAPHICS Mathematics VOF Curvilinear coordinates Heaviside step function grid transformation Mathematical analysis General Engineering Eulerian path Level-Set Immersed boundary method Grid [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation 010101 applied mathematics Mesh generation symbols [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] |
Zdroj: | Computers and Fluids Computers and Fluids, Elsevier, 2010, 46 (1), pp.422-428. ⟨10.1016/j.compfluid.2010.11.008⟩ |
ISSN: | 0045-7930 |
DOI: | 10.1016/j.compfluid.2010.11.008 |
Popis: | International audience; A global methodology dealing with fictitious domains of all kinds on orthogonal curvilinear grids is presented. The main idea is to transform the curvilinear workframe and its associated elements (velocity, immersed interfaces...) into a Cartesian grid. On such a grid, many operations can be performed much faster than on curvilinear grids. The method is coupled with a Thread Ray-casting algorithm which work on Cartesian grids only. This algorithm computes quickly the Heaviside function related to the interior of an object on an Eulerian grid. The approach is also coupled with an immersed boundary method ($L^2$-penalty method) or with phase advection with VOF-PLIC, VOF-TVD, Front-tracking or Level-set methods. Applications, convergence and speed tests are performed for shape initializations, immersed boundary methods, and interface tracking. |
Databáze: | OpenAIRE |
Externí odkaz: |