Reproducibility and Radiation Effect of High-Resolution In Vivo Micro Computed Tomography Imaging of the Mouse Lumbar Vertebra and Long Bone

Autor: Liu Yang, Linhong Deng, Rebecca Chung, X. Sherry Liu, Wei Ju Tseng, Priyanka Ghosh, Youwen Yang, Chih-Chiang Chang, Hongbo Zhao, Chantal M.J. de Bakker
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Ann Biomed Eng
Popis: A moderate radiation dose, in vivo μCT scanning protocol was developed and validated for long-term monitoring of multiple skeletal sites (femur, tibia, vertebra) in mice. A customized, 3D printed mouse holder was designed and utilized to minimize error associated with animal repositioning, resulting in good to excellent reproducibility in most cortical and trabecular bone microarchitecture and density parameters except for connectivity density. Repeated in vivo μCT scans of mice were performed at the right distal femur and the 4(th) lumbar vertebra every 3 weeks until sacrifice at 9 weeks after the baseline scan. Comparing to the non-radiated counterparts, no radiation effect was found on trabecular bone volume fraction, osteoblast and osteoblast number/surface, or bone formation rate at any skeletal site. However, trabecular number, thickness, and separation, and structure model index were sensitive to ionizing radiation associated with the μCT scans, resulting in subtle but significant changes over multiple scans. Although the extent of radiation damage on most trabecular bone microarchitecture measures are comparable or far less than the age-related changes during the monitoring period, additional considerations need to be taken to minimize the confounding radiation factors when designing experiments using in vivo μCT imaging for long-term monitoring of mouse bone.
Databáze: OpenAIRE