Local Certification of Graphs with Bounded Genus

Autor: Laurent Feuilloley, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, Éric Rémila, Ioan Todinca
Přispěvatelé: Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243)), Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Centre National de la Recherche Scientifique (CNRS), Université Paris Cité (UPCité), Universidad Adolfo Ibáñez [Santiago], Departamento de Ingeniería Matemática [Santiago] (DIM), Universidad de Chile = University of Chile [Santiago] (UCHILE)-Centre National de la Recherche Scientifique (CNRS), Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne (GATE Lyon Saint-Étienne), École normale supérieure de Lyon (ENS de Lyon)-Université Lumière - Lyon 2 (UL2)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Informatique Fondamentale d'Orléans (LIFO), Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA), ANR-16-CE40-0023,DESCARTES,Abstraction modulaire pour le calcul distribué(2016), ANR-17-CE40-0013,FREDDA,Méthodes formelles pour la conception d'algorithmes distribués(2017), ANR-18-CE47-0010,QuDATA,Algorithmes quantiques pour données massives(2018)
Rok vydání: 2020
Předmět:
Zdroj: Discrete Applied Mathematics
Discrete Applied Mathematics, 2023, 325, pp.9--36. ⟨10.1016/j.dam.2022.10.004⟩
ISSN: 0166-218X
DOI: 10.48550/arxiv.2007.08084
Popis: International audience; Naor, Parter, and Yogev [SODA 2020] recently designed a compiler for automatically translating standard centralized interactive protocols to distributed interactive protocols, as introduced by Kol, Oshman, and Saxena [PODC 2018]. In particular, by using this compiler, every linear-time algorithm for deciding the membership to some fixed graph class can be translated into a $\mathsf{dMAM}(O(\log n))$ protocol for this class, that is, a distributed interactive protocol with $O(\log n)$-bit proof size in $n$-node graphs, and three interactions between the (centralizer) computationally-unbounded but non-trustable prover Merlin, and the (decentralized) randomized computationally-limited verifier Arthur. As a corollary, there is a $\mathsf{dMAM}(O(\log n))$ protocol for the class of planar graphs, as well as for the class of graphs with bounded genus. We show that there exists a distributed interactive protocol for the class of graphs with bounded genus performing just a single interaction, from the prover to the verifier, yet preserving proof size of $O(\log n)$ bits. This result also holds for the class of graphs with bounded demi-genus, that is, graphs that can be embedded on a non-orientable surface of bounded genus. The interactive protocols described in this paper are actually proof-labeling schemes, i.e., a subclass of interactive protocols, previously introduced by Korman, Kutten, and Peleg [PODC 2005]. In particular, these schemes do not require any randomization from the verifier, and the proofs may often be computed a priori, at low cost, by the nodes themselves. Our results thus extend the recent proof-labeling scheme for planar graphs by Feuilloley et al. [PODC 2020], to graphs of bounded genus, and to graphs of bounded demigenus.
Databáze: OpenAIRE