Author Correction: Disruption of mitochondrial complex I induces progressive parkinsonism

Autor: Patricia González-Rodríguez, Enrico Zampese, Kristen A. Stout, Jaime N. Guzman, Ema Ilijic, Ben Yang, Tatiana Tkatch, Mihaela A. Stavarache, David L. Wokosin, Lin Gao, Michael G. Kaplitt, José López-Barneo, Paul T. Schumacker, D. James Surmeier
Přispěvatelé: Northwestern University (US), Michael J. Fox Foundation for Parkinson's Research, IDP Foundation, European Research Council
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Digital.CSIC. Repositorio Institucional del CSIC
instname
Popis: In the version of this article initially published, the two bottom-left panels in Extended Data Fig. 8b duplicated the top-left and bottom-right panels of Fig. 4d presenting open field traces in mice. The panels have now been replaced with new images. The errors have been corrected in the online version of the article.
Loss of functional mitochondrial complex I (MCI) in the dopaminergic neurons of the substantia nigra is a hallmark of Parkinson’s disease1. Yet, whether this change contributes to Parkinson’s disease pathogenesis is unclear2. Here we used intersectional genetics to disrupt the function of MCI in mouse dopaminergic neurons. Disruption of MCI induced a Warburg-like shift in metabolism that enabled neuronal survival, but triggered a progressive loss of the dopaminergic phenotype that was first evident in nigrostriatal axons. This axonal deficit was accompanied by motor learning and fine motor deficits, but not by clear levodopa-responsive parkinsonism—which emerged only after the later loss of dopamine release in the substantia nigra. Thus, MCI dysfunction alone is sufficient to cause progressive, human-like parkinsonism in which the loss of nigral dopamine release makes a critical contribution to motor dysfunction, contrary to the current Parkinson’s disease paradigm.
Electron microscopy tissue processing and imaging was performed at the Northwestern University Center for Advanced Microscopy, supported by NCI CCSG P30 CA060553 awarded to the Robert H. Lurie Comprehensive Cancer Center. This study was supported by grants from the Michael J. Fox Foundation (to D.J.S.), the JPB Foundation (to D.J.S.), the IDP Foundation (to D.J.S.), the Flanagan Fellowship (to P.G.-R.) and the European Research Council ERC Advanced Grant PRJ201502629 (to J.L.-B.).
Databáze: OpenAIRE