Thermal plasma gasification of organic waste stream coupled with CO2-sorption enhanced reforming employing different sorbents for enhanced hydrogen production

Autor: Vineet Singh Sikarwar, Nageswara Rao Peela, Arun Krishna Vuppaladadiyam, Newton Libanio Ferreira, Alan Mašláni, Ritik Tomar, Michael Pohořelý, Erik Meers, Michal Jeremiáš
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: RSC ADVANCES
ISSN: 2046-2069
Popis: In the past few years, rising concerns vis-a-vis global climate change and clean energy demand have brought worldwide attention to developing the 'biomass/organic waste-to-energy' concept as a zero-emission, environment-friendly and sustainable pathway to simultaneously quench the global energy thirst and process diverse biomass/organic waste streams. Bioenergy with carbon capture and storage (BECCS) can be an influential technological route to curb climate change to a significant extent by preventing CO2 discharge. One of the pathways to realize BECCS is via in situ CO2-sorption coupled with a thermal plasma gasification process. In this study, an equilibrium model is developed using RDF as a model compound for plasma assisted CO2-sorption enhanced gasification to evaluate the viability of the proposed process in producing H-2 rich syngas. Three different classes of sorbents are investigated namely, a high temperature sorbent (CaO), an intermediate temperature sorbent (Li4SiO4) and a low temperature sorbent (MgO). The distribution of gas species, H-2 yield, dry gas yield and LHV are deduced with the varying gasification temperature, reforming temperature, steam-to-feedstock ratio and sorbent-to-feedstock for all three sorbents. Moreover, optimal values of different process variables are predicted. Maximum H-2 is noted to be produced at 550 degrees C for CaO (79 vol%), 500 degrees C for MgO (29 vol%) and 700 degrees C (55 vol%) for Li4SiO4 whereas the optimal SOR/F ratios are found to be 1.5 for CaO, 1.0 for MgO and 2.5 for Li4SiO4. The results obtained in the study are promising to employ plasma assisted CO2-sorption enhanced gasification as an efficacious pathway to produce clean energy and thus achieve carbon neutrality.
Databáze: OpenAIRE