$\mathcal{N}=1$ supersymmetric three-dimensional QED in the large-$N_f$ limit and applications to super-graphene
Autor: | James, A., Simon Metayer, Teber, S. |
---|---|
Přispěvatelé: | Laboratoire de Physique Théorique et Hautes Energies (LPTHE), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
High Energy Physics - Theory
Strongly Correlated Electrons (cond-mat.str-el) dimension: 3 [PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] High Energy Physics::Lattice graphene High Energy Physics::Phenomenology FOS: Physical sciences supersymmetry: 1 conductivity: optical correction: quantum [PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] Condensed Matter - Strongly Correlated Electrons High Energy Physics - Theory (hep-th) fixed point: infrared quantum electrodynamics expansion 1/N photino: propagator |
Zdroj: | INSPIRE-HEP |
Popis: | We study $\mathcal{N}=1$ supersymmetric three-dimensional Quantum Electrodynamics with $N_f$ two-component fermions. Due to the infra-red (IR) softening of the photon, $\ep$-scalar and photino propagators, the theory flows to an interacting fixed point deep in the IR, $p_E \ll e^2 N_f/8$, where $p_E$ is the euclidean momentum and $e$ the electric charge. At next-to-leading order in the $1/N_f$-expansion, we find that the flow of the dimensionless effective coupling constant $\overline{\al}$ is such that: $\overline{\al} \ra 8/\big(N_f \,(1+C/N_f)\big) \approx (8/N_f)(1-0.4317/N_f)$ where $C= 2\,(12-\pi^2)/\pi^2$. Hence, the non-trivial IR fixed point is stable with respect to quantum corrections. Various properties of the theory are explored and related via a mapping to the ones of a $\mathcal{N}=1$ model of super-graphene. In particular, we derive the interaction correction coefficient to the optical conductivity of super-graphene, $C_{\rm sg} = (12-\pi^2)/(2\pi) = 0.3391$, which is six times larger than in the non-supersymmetric case, $C_{\rm g} = (92-9\pi^2)/(18\pi) = 0.0561$. Comment: The paper has been withdrawn at the request of Albin James. Nevertheless, Sofian Teber and Simon Metayer fully assume the content of the paper |
Databáze: | OpenAIRE |
Externí odkaz: |