A simple immunoassay for extracellular vesicle liquid biopsy in microliters of non-processed plasma
Autor: | Mariano Provencio, A. Sandua Condado, Mar Valés-Gómez, R. Jara Acevedo, Yaiza Cáceres-Martell, A. Beneitez-Martinez, María Yáñez-Mó, E. Sanchez-Herrero, A. Gonzalez Hernandez, Carmen Campos-Silva, Antonio A. Romero |
---|---|
Přispěvatelé: | UAM. Departamento de Biología Molecular |
Rok vydání: | 2022 |
Předmět: |
Biomedical Engineering
Pharmaceutical Science Medicine (miscellaneous) Bioengineering Extracellular vesicles Applied Microbiology and Biotechnology Flow cytometry Biomarkers Tumor medicine Medical technology Humans Colloids Liquid biopsy R855-855.5 Cancer Immunoassay Chromatography medicine.diagnostic_test Chemistry Flocculation Plasma Extracellular vesicle Biología y Biomedicina / Biología Sedimentation coefficient Molecular Medicine ELISA Ultracentrifuge Ultracentrifugation TP248.13-248.65 Biotechnology |
Zdroj: | Journal of Nanobiotechnology, Vol 20, Iss 1, Pp 1-19 (2022) |
ISSN: | 1477-3155 |
DOI: | 10.1186/s12951-022-01256-5 |
Popis: | BackgroundExtracellular vesicles (EVs), released by most cell types, provide an excellent source of biomarkers in biological fluids. However, in order to perform validation studies and screenings of patient samples, it is still necessary to develop general techniques permitting rapid handling of small amounts of biological samples from large numbers of donors.ResultsHere we describe a method that, using just a few microliters of patient’s plasma, identifies tumour markers exposed on EVs. Studying physico-chemical properties of EVs in solution, we demonstrate that they behave as stable colloidal suspensions and therefore, in immunocapture assays, many of them are unable to interact with a stationary functionalised surface. Using flocculation methods, like those used to destabilize colloids, we demonstrate that cationic polymers increase EV ζ-potential, diameter, and sedimentation coefficient and thus, allow a more efficient capture on antibody-coated surfaces by both ELISA and bead-assisted flow cytometry. These findings led to optimization of a protocol in microtiter plates allowing effective immunocapture of EVs, directly in plasma without previous ultracentrifugation or other EV enrichment. The method, easily adaptable to any laboratory, has been validated using plasma from lung cancer patients in which the epithelial cell marker EpCAM has been detected on EVs.ConclusionsThis optimized high throughput, easy to automate, technology allows screening of large numbers of patients to phenotype tumour markers in circulating EVs, breaking barriers for the validation of proposed EV biomarkers and the discovery of new ones.Graphical Abstract |
Databáze: | OpenAIRE |
Externí odkaz: |