When does partial commutative closure preserve regularity?

Autor: Jean-Eric Pin, Giovanna Guaiana, Antonio Cano Gómez
Přispěvatelé: Departamento de Sistemas Informáticos y Computación [Valencia], Universitat Politècnica de València (UPV), Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), Université Le Havre Normandie (ULH), Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA), Laboratoire d'informatique Algorithmique : Fondements et Applications (LIAFA), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Pin, Jean-Eric
Jazyk: angličtina
Rok vydání: 2008
Předmět:
Discrete mathematics
Parallelism (rhetoric)
[INFO.INFO-OH]Computer Science [cs]/Other [cs.OH]
Closure (topology)
Minimal ideal
0102 computer and information sciences
02 engineering and technology
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
01 natural sciences
[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]
[INFO.INFO-OH] Computer Science [cs]/Other [cs.OH]
[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]
[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]
Regular language
Free product
010201 computation theory & mathematics
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
0202 electrical engineering
electronic engineering
information engineering

020201 artificial intelligence & image processing
Commutation
Connection (algebraic framework)
Commutative property
[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]
Mathematics
Zdroj: Proceedings of ICALP 2008
ICALP 2008
ICALP 2008, 2008, Reykjavik, Iceland. pp.209-220
Automata, Languages and Programming ISBN: 9783540705826
ICALP (2)
Popis: International audience; The closure of a regular language under commutation or partial commutation has been extensively studied. In this paper, we present new advances on two problems of this area. Problem 1. When is the closure of a regular language under [partial] commutation still regular? Problem 2. Are there any robust class of languages closed under [partial] commutation? Let A be a finite alphabet, I a partial commutation on A and D be its complement in A x A. Our main results on Problems 1 and 2 can be summarized as follows: The class Pol G (polynomials of group languages) is closed under commutation. If D is transitive, it is also closed under I-commutation. Under some simple conditions on the graph of I, the closure of a language of Pol G under I-commutation is regular. There is a very robust class of languages W which is closed under commutation. This class, which contains Pol G, is closed under intersection, union, shuffle, concatenation, residual, length preserving morphisms and inverses of morphisms. Further, it is decidable and can be defined as the largest positive variety of languages not containing (ab)*. If I is transitive, the closure of a language of W under I-commutation is regular. The proofs are nontrivial and combine several advanced techniques, including combinatorial Ramsey type arguments, algebraic properties of the syntactic monoid, finiteness conditions on semigroups and properties of insertion systems.
Databáze: OpenAIRE