A nonlinear time-series analysis approach to identify thresholds in associations between population antibiotic use and rates of resistance
Autor: | J.M. López-Lozano, Mamoon A. Aldeyab, Nieves Gonzalo-Jiménez, Didier Hocquet, Arielle Beyaert, Timothy Lawes, David Farren, César Nebot, Jesús Rodríguez-Baño, Pilar Retamar, Xavier Bertrand, Ian M. Gould, Gábor Kardos, Geraldine Conlon-Bingham, Adina Fésűs, Michael G. Scott |
---|---|
Přispěvatelé: | Hungarian Academy of Sciences, Wellcome Trust, Instituto de Salud Carlos III, Ministerio de Economía, Industria y Competitividad (España), Red Española de Investigación en Patología Infecciosa, European Commission, Laboratoire Chrono-environnement - CNRS - UBFC (UMR 6249) (LCE), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Centre Hospitalier Régional Universitaire de Besançon (CHRU Besançon), MIRACL, University Hospital Virgen Macarena |
Rok vydání: | 2019 |
Předmět: |
Microbiology (medical)
Acinetobacter baumannii Methicillin-Resistant Staphylococcus aureus medicine.medical_specialty Time Factors medicine.drug_class Immunology Antibiotics Population Drug resistance medicine.disease_cause Applied Microbiology and Biotechnology Microbiology 03 medical and health sciences Antimicrobial Stewardship Antibiotic resistance Bacterial Proteins Environmental health Epidemiology Drug Resistance Bacterial Genetics medicine Escherichia coli Humans education 030304 developmental biology 0303 health sciences education.field_of_study biology 030306 microbiology Pseudomonas aeruginosa Incidence (epidemiology) Gyógyszerészeti tudományok Incidence Cell Biology Orvostudományok Bacterial Infections Models Theoretical biology.organism_classification 3. Good health Anti-Bacterial Agents Europe [SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology |
Zdroj: | Digital.CSIC. Repositorio Institucional del CSIC instname Nature Microbiology Nature Microbiology, Nature Publishing Group, 2019, 4 (7), pp.1160-1172. ⟨10.1038/s41564-019-0410-0⟩ |
ISSN: | 2058-5276 |
DOI: | 10.1038/s41564-019-0410-0⟩ |
Popis: | Balancing access to antibiotics with the control of antibiotic resistance is a global public health priority. At present, antibiotic stewardship is informed by a ‘use it and lose it’ principle, in which antibiotic use by the population is linearly related to resistance rates. However, theoretical and mathematical models suggest that use–resistance relationships are nonlinear. One explanation for this is that resistance genes are commonly associated with ‘fitness costs’ that impair the replication or transmissibility of the pathogen. Therefore, resistant genes and pathogens may only gain a survival advantage where antibiotic selection pressures exceed critical thresholds. These thresholds may provide quantitative targets for stewardship—optimizing the control of resistance while avoiding over-restriction of antibiotics. Here, we evaluated the generalizability of a nonlinear time-series analysis approach for identifying thresholds using historical prescribing and microbiological data from five populations in Europe. We identified minimum thresholds in temporal relationships between the use of selected antibiotics and incidence rates of carbapenem-resistant Acinetobacter baumannii (Hungary), extended-spectrum β-lactamase-producing Escherichia coli (Spain), cefepime-resistant E. coli (Spain), gentamicin-resistant Pseudomonas aeruginosa (France) and methicillin-resistant Staphylococcus aureus (Northern Ireland) in different epidemiological phases. Using routinely generated data, our approach can identify context-specific quantitative targets for rationalizing population antibiotic use and controlling resistance. Prospective intervention studies that restrict antibiotic consumption are needed to validate these thresholds. G.K. was supported by a Bolyai Research Scholarship of the Hungarian Academy of Sciences. T.L. was supported by the Wellcome Trust. J.R.B. and P.R. received funding for research from Plan Nacional de I+D+i 2013–2016 and Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Economía, Industria y Competitividad, Spanish Network for Research in Infectious Diseases (RD16/0016/0001), co-financed by European Development Regional Fund ‘A way to achieve Europe’, Operative Programme Intelligent Growth 2014–2020. |
Databáze: | OpenAIRE |
Externí odkaz: |