Approximate max-min resource sharing for structured concave optimization
Autor: | J. Villavicencio, Michael D. Grigoriadis, L. Porkolab, Leonid Khachiyan |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2001 |
Předmět: | |
Zdroj: | SIAM JOURNAL ON OPTIMIZATION Artículos CONICYT CONICYT Chile instacron:CONICYT |
Popis: | We present a Lagrangian decomposition algorithm which uses logarithmic potential reduction to compute an $\varepsilon$-approximate solution of the general max-min resource sharing problem with M nonnegative concave constraints on a convex set B. We show that this algorithm runs in $O(M(\varepsilon^{-2}+{\rm ln} M))$ iterations, a data independent bound which is optimal up to polylogarithmic factors for any fixed relative accuracy $\varepsilon\in(0,1)$. In the block-angular case, B is the product of K convex sets (blocks) and each constraint function is block separable. For such models, an iteration of our method requires a $\Theta(\varepsilon)$-approximate solution of K independent block maximization problems which can be computed in parallel. |
Databáze: | OpenAIRE |
Externí odkaz: |