Constraint scores for semi-supervised feature selection: A comparative study

Autor: Ludovic Macaire, Mariam Kalakech, Philippe Biela, Denis Hamad
Přispěvatelé: LAGIS-SI, Laboratoire d'Automatique, Génie Informatique et Signal (LAGIS), Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Informatique Signal et Image de la Côte d'Opale (LISIC), Université du Littoral Côte d'Opale (ULCO)
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: Pattern Recognition Letters
Pattern Recognition Letters, Elsevier, 2011, 32 (5), pp.656-665. ⟨10.1016/j.patrec.2010.12.014⟩
ISSN: 0167-8655
DOI: 10.1016/j.patrec.2010.12.014⟩
Popis: International audience; Recent feature selection scores using pairwise constraints (must-link and cannot-link) have shown better performances than the unsupervised methods and comparable to the supervised ones. However, these scores use only the pairwise constraints and ignore the available information brought by the unlabeled data. Moreover, these constraint scores strongly depend on the given must-link and cannot-link subsets built by the user. In this paper, we address these problems and propose a new semi-supervised constraint score that uses both pairwise constraints and local properties of the unlabeled data. Experiments using Kendall's coefficient and accuracy rates, show that this new score is less sensitive to the given constraints than the previous scores while providing similar performances.
Databáze: OpenAIRE