Modularity of generating series of divisors on unitary Shimura varieties
Autor: | Jan H. Bruinier, Benjamin Howard, Stephen S. Kudla, Michael Rapoport, Tonghai Yang |
---|---|
Rok vydání: | 2017 |
Předmět: |
Mathematics - Number Theory
General Mathematics Mathematics::Number Theory 010102 general mathematics 01 natural sciences 14G35 11F55 11F27 Mathematics - Algebraic Geometry Mathematics::Algebraic Geometry 0103 physical sciences FOS: Mathematics 010307 mathematical physics Number Theory (math.NT) 0101 mathematics Algebraic Geometry (math.AG) |
DOI: | 10.48550/arxiv.1702.07812 |
Popis: | We form generating series of special divisors, valued in the Chow group and in the arithmetic Chow group, on the compactified integral model of a Shimura variety associated to a unitary group of signature (n-1,1), and prove their modularity. The main ingredient of the proof is the calculation of the vertical components appearing in the divisor of a Borcherds product on the integral model. Comment: Final version. To appear in Asterisque |
Databáze: | OpenAIRE |
Externí odkaz: |