Genome expansion by allopolyploidization in the fungal strain Coniochaeta 2T2.1 and its exceptional lignocellulolytic machinery
Autor: | Anna Lipzen, Nancy N. Nichols, Jan Dirk van Elsas, Diego Javier Jiménez, Kurt LaButti, Mi Yan, Igor V. Grigoriev, Kerrie Barry, Stephen J. Mondo, Ronald E. Hector |
---|---|
Přispěvatelé: | Van Elsas lab |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Allopolyploidization
CAZy Coniochaeta In silico lcsh:Biotechnology Cellulase Management Monitoring Policy and Law Biology Applied Microbiology and Biotechnology Genome SEQUENCE lcsh:Fuel BIOMASS Industrial Biotechnology 03 medical and health sciences chemistry.chemical_compound lcsh:TP315-360 lcsh:TP248.13-248.65 Gene duplication Genetics Lignocellulolytic enzymes VEGETATIVE COMPATIBILITY PHYLOGENETIC ANALYSIS Fungal genomics TRANSCRIPTOME Gene 030304 developmental biology 0303 health sciences 030306 microbiology Renewable Energy Sustainability and the Environment Research MICROBIAL CONSORTIA Human Genome GLYCOSIDE HYDROLASE FAMILY Wheat straw BETA-L-ARABINOFURANOSIDASE Chemical Engineering Reticulate evolution Xyloglucan General Energy chemistry LYTIC POLYSACCHARIDE MONOOXYGENASES Lytic polysaccharide monoxygenases biology.protein ENZYMES Biotechnology |
Zdroj: | Biotechnology for Biofuels, Vol 12, Iss 1, Pp 1-18 (2019) Biotechnology for biofuels, vol 12, iss 1 Biotechnology for Biofuels, 12(1):229. BioMed Central Ltd. Biotechnology for Biofuels |
ISSN: | 1754-6834 |
DOI: | 10.1186/s13068-019-1569-6 |
Popis: | Background Particular species of the genus Coniochaeta (Sordariomycetes) exhibit great potential for bioabatement of furanic compounds and have been identified as an underexplored source of novel lignocellulolytic enzymes, especially Coniochaeta ligniaria. However, there is a lack of information about their genomic features and metabolic capabilities. Here, we report the first in-depth genome/transcriptome survey of a Coniochaeta species (strain 2T2.1). Results The genome of Coniochaeta sp. strain 2T2.1 has a size of 74.53 Mbp and contains 24,735 protein-encoding genes. Interestingly, we detected a genome expansion event, resulting ~ 98% of the assembly being duplicated with 91.9% average nucleotide identity between the duplicated regions. The lack of gene loss, as well as the high divergence and strong genome-wide signatures of purifying selection between copies indicates that this is likely a recent duplication, which arose through hybridization between two related Coniochaeta-like species (allopolyploidization). Phylogenomic analysis revealed that 2T2.1 is related Coniochaeta sp. PMI546 and Lecythophora sp. AK0013, which both occur endophytically. Based on carbohydrate-active enzyme (CAZy) annotation, we observed that even after in silico removal of its duplicated content, the 2T2.1 genome contains exceptional lignocellulolytic machinery. Moreover, transcriptomic data reveal the overexpression of proteins affiliated to CAZy families GH11, GH10 (endoxylanases), CE5, CE1 (xylan esterases), GH62, GH51 (α-l-arabinofuranosidases), GH12, GH7 (cellulases), and AA9 (lytic polysaccharide monoxygenases) when the fungus was grown on wheat straw compared with glucose as the sole carbon source. Conclusions We provide data that suggest that a recent hybridization between the genomes of related species may have given rise to Coniochaeta sp. 2T2.1. Moreover, our results reveal that the degradation of arabinoxylan, xyloglucan and cellulose are key metabolic processes in strain 2T2.1 growing on wheat straw. Different genes for key lignocellulolytic enzymes were identified, which can be starting points for production, characterization and/or supplementation of enzyme cocktails used in saccharification of agricultural residues. Our findings represent first steps that enable a better understanding of the reticulate evolution and “eco-enzymology” of lignocellulolytic Coniochaeta species. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |