El Teorema de Iwasawa
Autor: | Carlos Mejía Alemán, Mario Enrique Santiago Saldaña |
---|---|
Rok vydání: | 2021 |
Zdroj: | Universidad Nacional Mayor de San Marcos |
ISSN: | 1609-8439 1560-912X |
DOI: | 10.15381/pesquimat.v24i1.20511 |
Popis: | Sean G un grupo, Ω un conjunto y K = {g ∈ G | ω * g = ω, Ɐω ∈ Ω} el núcleo de Ω donde G actua sobre el conjunto Ω. Mostraremos que G/K es simple en el caso que el grupo G verifique ser primitivo sobre Ω, así como también que sea igual a su subgrupo derivado y por último si α ∈ Ω entonces Gα tiene un subgrupo A que es abeliano y normal tal que G =< Ag | g ∈ G >, donde Gα es el estabilizador de α en G. Para finalizar daremos una aplicación de que el grupo alternante A5 es simple. |
Databáze: | OpenAIRE |
Externí odkaz: |