Optimal Design and Performance Analysis of a Hybrid Off-Grid Renewable Power System Considering Different Component Scheduling, PV Modules, and Solar Tracking Systems
Autor: | Peter Crossley, Hashim Hizam, Keifa Vamba Konneh, Noor Izzri Abdul Wahab, Hasan Masrur, Syed Z. Islam, Tomonobu Senjyu, Mohammad Lutfi Othman |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
General Computer Science
Computer science 020209 energy Scheduling (production processes) 02 engineering and technology 010501 environmental sciences 01 natural sciences techno-economic analysis Automotive engineering Sierra leone Solar tracker Derating 0202 electrical engineering electronic engineering information engineering General Materials Science net present cost 0105 earth and related environmental sciences business.industry hybrid renewable energy sources solar tracking General Engineering Tracking system Renewable energy TK1-9971 Electricity generation Off-grids seasonal scheduling Electricity Electrical engineering. Electronics. Nuclear engineering business |
Zdroj: | IEEE Access, Vol 9, Pp 64393-64413 (2021) |
ISSN: | 2169-3536 |
Popis: | The concept of introducing hybrid off-grid systems has made electricity accessible to areas that are far or have no access to grid network. This paper evaluates the techno-economic and environmental characteristics of a hybrid renewable energy system considering three different scheduling approaches, four different solar tracking systems, two different PV modules and eight scheduling scenarios to supply sustainable electricity to a rural community in Sierra Leone. Each scenario consists of a solar tracking system, a specific type of PV module and a scheduling approach. The aim is to find the most efficient and cost-effective scenario that meets the electrical demands of the village. Results revealed that the ‘Two axis tracking system’ generated the highest PV power, 28.8% additional power compared to the ‘No tracking system’ confirming the superiority of using a tracking system though it comes with initial cost repercussions. Also, systems that employed the use of Canadiasolar Dymond CS6K-285M-FG PV module tend to be more efficient and cost-effective than those that employed Sharp ND-250QCS PV module even with the same solar tracking technology and scheduling approach. From the best scheduling approach (third scheduling), Scenario 7 (SC#7) gives the lowest net present cost (NPC) of $ \$ $ 1.53M with $ \$ $ 0.173/kWh cost of energy (COE) and CO2 emission of 8.54 kg/yr making it the optimum scenario. A daily operation of the optimum scenario on both a sunny and rainy day confirms that the system is capable of supplying the required electricity for both rainy and dry seasons. Sensitivity analyses explain the high reliance of the system cost on the erratic inflation rate, discount rate and PV derating factor. Maintaining a healthy and sustainable environment depends on the minimum load ratio of both the biogas and diesel generators. |
Databáze: | OpenAIRE |
Externí odkaz: |