Computational fluid dynamics of the airways after left-upper pulmonary lobectomy: A case study

Autor: Marta Tullio, Rosaria Carrinola, Francesca Pennati, Lorenzo Aliboni, Andrea Aliverti, Alessandro Palleschi
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Spirometry
medicine.medical_specialty
0206 medical engineering
Airflow
Biomedical Engineering
Bronchi
02 engineering and technology
computational fluid dynamics
030204 cardiovascular system & hematology
Computational fluid dynamics
law.invention
Pulmonary function testing
03 medical and health sciences
0302 clinical medicine
law
Internal medicine
imaged-based
Fluid dynamics
medicine
Research Article ‐ Applications
Humans
Computer Simulation
Molecular Biology
Lung
Research Article ‐ Application
medicine.diagnostic_test
business.industry
pulmonary lobectomy
Applied Mathematics
020601 biomedical engineering
Lobe
Trachea
medicine.anatomical_structure
Computational Theory and Mathematics
imaged‐based
tracheobronchial tree modeling
Modeling and Simulation
Ventilation (architecture)
Cardiology
Hydrodynamics
Current (fluid)
business
Software
Zdroj: International Journal for Numerical Methods in Biomedical Engineering
Popis: Pulmonary lobectomy is the gold standard intervention for lung cancer removal and consists of the complete resection of the affected lung lobe, which, coupled with the re‐adaptation of the remaining thoracic structures, decreases the postoperative pulmonary function of the patient. Current clinical practice, based on spirometry and cardiopulmonary exercise tests, does not consider local changes, providing an average at‐the‐mouth estimation of residual functionality. Computational Fluid Dynamics (CFD) has proved a valuable solution to obtain quantitative and local information about airways airflow dynamics. A CFD investigation was performed on the airway tree of a left‐upper pulmonary lobectomy patient, to quantify the effects of the postoperative alterations. The patient‐specific bronchial models were reconstructed from pre‐ and postoperative CT scans. A parametric laryngeal model was merged to the geometries to account for physiological‐like inlet conditions. Numerical simulations were performed in Fluent. The postoperative configuration revealed fluid dynamic variations in terms of global velocity (+23%), wall pressure (+48%), and wall shear stress (+39%). Local flow disturbances emerged at the resection site: a high‐velocity peak of 4.92 m/s was found at the left‐lower lobe entrance, with a local increase of pressure at the suture zone (18 Pa). The magnitude of pressure and secondary flows increased in the trachea and flow dynamics variations were observed also in the contralateral lung, causing altered lobar ventilation. The results confirmed that CFD is a patient‐specific approach for a quantitative evaluation of fluid dynamics parameters and local ventilation providing additional information with respect to current clinical approaches.
Quantitative and clinically relevant information were provided for a left‐upper lobectomy patient, using a subject‐specific computational approach. The reconstruction of the airway tree revealed severe anatomical distortions after surgery. Numerical simulations demonstrated highly disturbed fluid dynamics conditions in the whole structure with respect to the preoperative condition. At the resection site and at the trachea, local increases of velocity, secondary flows, pressure, and wall shear stress were found. Consequences were observed also in the contralateral lung, determining altered lobar ventilation.
Databáze: OpenAIRE