Boundedness of Littlewood-Paley Operators with Variable Kernel on Weighted Herz Spaces with Variable Exponent
Autor: | Omer Abdalrhman, Shuangping Tao, Afif Abdalmonem |
---|---|
Rok vydání: | 2018 |
Předmět: |
Mathematics::Functional Analysis
Pure mathematics Variable exponent lcsh:T Littlewood paley Kernel (statistics) Mathematics::Classical Analysis and ODEs parameterized littlewood-paley operators variable kernel weighted herz spaces muckenhoupt wariable exponents lcsh:Q lcsh:Science lcsh:Technology Mathematics Variable (mathematics) |
Zdroj: | Engineering and Applied Science Letters, Vol 1, Iss 2, Pp 10-22 (2018) |
ISSN: | 2617-9709 2617-9695 |
DOI: | 10.30538/psrp-easl2018.0007 |
Popis: | Let \(Ω∈L^∞(R^n)×L^2(S^{n-1})\) be a homogeneous function of degree zero. In this article, we obtain some boundedness of the parameterized Littlewood-Paley operators with variable kernels on weighted Herz spaces with variable exponent. |
Databáze: | OpenAIRE |
Externí odkaz: |