The biochemical composition of the actomyosin network sets the magnitude of cellular traction forces

Autor: Laurent Blanchoin, Laetitia Kurzawa, Timothée Vignaud, Somanna Kollimada, Fabrice Senger, Manuel Théry
Přispěvatelé: CytoMorphoLab, Physiologie cellulaire et végétale (LPCV), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Clinique de Chirurgie Digestive et Endocrinienne [CHU Nantes], Centre hospitalier universitaire de Nantes (CHU Nantes), Immunologie humaine, physiopathologie & immunothérapie (HIPI (UMR_S_976 / U976)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), ANR-14-CE11-0003,MaxForce,Maximiser la production de force: de la molécule au tissu(2014), ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017), European Project: 741773,AAA, European Project: 771599,ICEBERG, Martin-Laffon, Jacqueline, Appel à projets générique - Maximiser la production de force: de la molécule au tissu - - MaxForce2014 - ANR-14-CE11-0003 - Appel à projets générique - VALID, CBH-EUR-GS - - CBH-EUR-GS2017 - ANR-17-EURE-0003 - EURE - VALID, Adaptive Actin Architectures - AAA - 741773 - INCOMING, Exploration below the tip of the microtubule - ICEBERG - 771599 - INCOMING, Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Molecular Biology of the Cell
Molecular Biology of the Cell, 2021, 32 (18), pp.1737-1748. ⟨10.1091/mbc.E21-03-0109⟩
Molecular Biology of the Cell, American Society for Cell Biology, 2021, 32 (18), pp.1737-1748. ⟨10.1091/mbc.E21-03-0109⟩
ISSN: 1939-4586
DOI: 10.1091/mbc.E21-03-0109⟩
Popis: International audience; The regulation of cellular force production relies on the complex interplay between a well-conserved set of proteins of the cytoskeleton: actin, myosin, and α-actinin. Despite our deep knowledge of the role of these proteins in force production at the molecular scale, our understanding of the biochemical regulation of the magnitude of traction forces generated at the entire-cell level has been limited, notably by the technical challenge of measuring traction forces and the endogenous biochemical composition in the same cell. In this study, we developed an alternative Traction-Force Microscopy (TFM) assay, which used a combination of hydrogel micropatterning to define cell adhesion and shape and an intermediate fixation/immunolabeling step to characterize strain energies and the endogenous protein contents in single epithelial cells. Our results demonstrated that both the signal intensity and the area of the Focal Adhesion (FA)–associated protein vinculin showed a strong positive correlation with strain energy in mature FAs. Individual contents from actin filament and phospho-myosin displayed broader deviation in their linear relationship to strain energies. Instead, our quantitative analyzes demonstrated that their relative amount exhibited an optimum ratio of phospho-myosin to actin, allowing maximum force production by cells. By contrast, although no correlation was identified between individual α-actinin content and strain energy, the ratio of α-actinin to actin filaments was inversely related to strain energy. Hence, our results suggest that, in the cellular model studied, traction-force magnitude is dictated by the relative numbers of molecular motors and cross-linkers per actin filament, rather than the amounts of an individual component in the cytoskeletal network. This assay offers new perspectives to study in more detail the complex interplay between the endogenous biochemical composition of individual cells and the force they produce.
Databáze: OpenAIRE