Amino Acid‐Induced Interface Charge Engineering Enables Highly Reversible Zn Anode
Autor: | Haotian Lu, Kai Tao, Hongge Pan, Ben Bin Xu, Keshuang Cao, Xuanlin Zhang, Yinzhu Jiang, Minghe Luo, Yunhao Lu |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Advanced Functional Materials. 31:2103514 |
ISSN: | 1616-3028 1616-301X |
DOI: | 10.1002/adfm.202103514 |
Popis: | Despite the impressive merits of low-cost and high-safety electrochemical energy storage for aqueous zinc ion batteries, researchers have long struggled against the unresolved issues of dendrite growth and the side reactions of zinc metal anodes. Herein, a new strategy of zinc-electrolyte interface charge engineering induced by amino acid additives is demonstrated for highly reversible zinc plating/stripping. Through electrostatic preferential absorption of positively charged arginine molecules on the surface of the zinc metal anode, a self-adaptive zinc-electrolyte interface is established for the inhibition of water adsorption/hydrogen evolution and the guidance of uniform zinc deposition. Consequently, an ultra-long stable cycling up to 2200 h at a high current density of 5 mA cm−2 is achieved under an areal capacity of 4 mAh cm−2. Even cycled at an ultra-high current density of 10 mA cm−2, 900 h-long stable cycling is still demonstrated, demonstrating the reliable self-adaptive feature of the zinc-electrolyte interface. This work provides a new perspective of interface charge engineering in realizing highly reversible bulk zinc anode that can prompt its practical application in aqueous rechargeable zinc batteries. |
Databáze: | OpenAIRE |
Externí odkaz: |