Development of a Granular Cohesive Model for Rolling Contact Fatigue Analysis: Crystal Anisotropy Modeling
Autor: | Christophe Changenet, Anthony Gravouil, Fabrice Ville, Jean-Philippe Noyel, Philippe Jacquet |
---|---|
Přispěvatelé: | LabECAM, ECAM Lyon (ECAM Lyon), Laboratoire Bourguignon des Matériaux et Procédés (LABOMAP), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Systèmes Mécaniques et Contacts (SMC), Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] (LaMCoS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Mécanique Multiéchelle pour les solides (MIMESIS) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Materials science
02 engineering and technology crystal anisotropy Stress (mechanics) [SPI]Engineering Sciences [physics] 0203 mechanical engineering Shear stress Boundary value problem Elasticity (economics) ComputingMilieux_MISCELLANEOUS cohesive business.industry Mechanical Engineering Numerical analysis Surfaces and Interfaces Structural engineering [SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph] 021001 nanoscience & nanotechnology Microstructure Finite element method Surfaces Coatings and Films Rolling contact fatigue 020303 mechanical engineering & transports Mechanics of Materials finite element Representative elementary volume 0210 nano-technology business damage |
Zdroj: | Tribology Transactions Tribology Transactions, Taylor & Francis, 2016, 59 (3), pp.469-479. ⟨10.1080/10402004.2015.1087076⟩ Tribology Transactions, Taylor & Francis, 2015, ⟨10.1080/10402004.2015.1087076⟩ |
ISSN: | 1040-2004 |
DOI: | 10.1080/10402004.2015.1087076⟩ |
Popis: | International audience; In rolling contact fatigue (RCF), failure mechanisms are known to be very sensitive to material microstructure. Yet, among the different numerical models developed to predict the RCF life, few models use a microstructure representation. A granular cohesive finite element model has been developed to simulate progressive damage of a structure subject to RCF and to investigate failure initiation mechanisms. This paper focuses on the implementation of crystal elasticity in the model. The numerical analysis of a representative volume element (RVE) validates the use of cubic elasticity to represent crystal behavior. The influence of the RVE size and the influence of boundary conditions applied on the RVE are evaluated in the finite element approximation framework. As regards the implementation of cubic elasticity in the RCF model, the generation of stress singularities at triple junctions is first highlighted. Then the average value of the intergranular shear stress is proved to be mesh size independent and therefore can be used as damage criterion. Finally, the influence of crystal elasticity on micro-cracks distribution is presented. |
Databáze: | OpenAIRE |
Externí odkaz: |