The Monge problem with vanishing gradient penalization: Vortices and asymptotic profile
Autor: | Jean Louet, Luigi De Pascale, Filippo Santambrogio |
---|---|
Přispěvatelé: | Dipartimento di Matematica [Pisa], University of Pisa - Università di Pisa, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de Mathématiques d'Orsay (LM-Orsay), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Financement PGMO (EDF & FMJH) : projet MACRO (FRANCE), project 2010A2TFX2 {\it'Calcolo delle Variazioni'}, financed by the Italian Ministry of Research (ITALY) |
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
General Mathematics
02 engineering and technology 01 natural sciences Measure (mathematics) density of smooth maps Monge problem Mathematics - Analysis of PDEs 0202 electrical engineering electronic engineering information engineering Optimal transport FOS: Mathematics Optimal transport Monge problem monotone transport Γ-convergence density of smooth maps Order (group theory) 49J45 [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Limit (mathematics) 0101 mathematics Mathematics - Optimization and Control Mathematics Applied Mathematics 010102 general mathematics Mathematical analysis smooth maps Dirichlet's energy Lipschitz continuity Sobolev space Monotone polygon Γ-convergence Optimization and Control (math.OC) monotone transport density of 020201 artificial intelligence & image processing [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] AMS subject classification 49J30 Analysis of PDEs (math.AP) |
Zdroj: | Journal de Mathématiques Pures et Appliquées Journal de Mathématiques Pures et Appliquées, Elsevier, 2016, 106, pp.237-279. ⟨10.1016/j.matpur.2016.02.009⟩ |
ISSN: | 0021-7824 |
DOI: | 10.1016/j.matpur.2016.02.009⟩ |
Popis: | We investigate the approximation of the Monge problem (minimizing ∫ Ω | T ( x ) − x | d μ ( x ) among the vector-valued maps T with prescribed image measure T # μ ) by adding a vanishing Dirichlet energy, namely e ∫ Ω | DT | 2 . We study the Γ-convergence as e → 0 , proving a density result for Sobolev (or Lipschitz) transport maps in the class of transport plans. In a certain two-dimensional framework that we analyze in details, when no optimal plan is induced by an H 1 map, we study the selected limit map, which is a new “special” Monge transport, possibly different from the monotone one, and we find the precise asymptotics of the optimal cost depending on e, where the leading term is of order e | log e | . |
Databáze: | OpenAIRE |
Externí odkaz: |