Elastic interfaces on disordered substrates: From mean-field depinning to yielding

Autor: Eduardo Alberto Jagla, Ezequiel E. Ferrero
Přispěvatelé: Centro Atómico Bariloche [Argentine], Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Comisión Nacional de Energía Atómica [ARGENTINA] (CNEA)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Flow curve
AMORPHOUS MATERIALS
General Physics and Astronomy
FOS: Physical sciences
Condensed Matter - Soft Condensed Matter
01 natural sciences
purl.org/becyt/ford/1 [https]
PLASTIC DEFORMATION
0103 physical sciences
[PHYS.COND.CM-DS-NN]Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn]
[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]
Elasticity (economics)
010306 general physics
ComputingMilieux_MISCELLANEOUS
Condensed Matter - Statistical Mechanics
Physics
Condensed matter physics
Statistical Mechanics (cond-mat.stat-mech)
Energy landscape
purl.org/becyt/ford/1.3 [https]
Disordered Systems and Neural Networks (cond-mat.dis-nn)
Condensed Matter - Disordered Systems and Neural Networks
Amorphous solid
Mean field theory
[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
Exponent
Soft Condensed Matter (cond-mat.soft)
[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]
Critical exponent
Zdroj: Physical Review Letters
Physical Review Letters, American Physical Society, 2019, 123 (21), ⟨10.1103/PhysRevLett.123.218002⟩
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
ISSN: 0031-9007
1079-7114
DOI: 10.1103/PhysRevLett.123.218002⟩
Popis: We consider a model of an elastic manifold driven on a disordered energy landscape, with generalized long range elasticity. Varying the form of the elastic kernel by progressively allowing for the existence of zero-modes, the model interpolates smoothly between mean field depinning and finite dimensional yielding. We find that the critical exponents of the model change smoothly in this process. Also, we show that in all cases the Herschel-Buckley exponent of the flowcurve depends on the analytical form of the microscopic pinning potential. This is a compelling indication that within the present elastoplastic description yielding in finite dimension $d\geq 2$ is a mean-field transition.
6 pages, 5 figures
Databáze: OpenAIRE