Elastic interfaces on disordered substrates: From mean-field depinning to yielding
Autor: | Eduardo Alberto Jagla, Ezequiel E. Ferrero |
---|---|
Přispěvatelé: | Centro Atómico Bariloche [Argentine], Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Comisión Nacional de Energía Atómica [ARGENTINA] (CNEA) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Flow curve
AMORPHOUS MATERIALS General Physics and Astronomy FOS: Physical sciences Condensed Matter - Soft Condensed Matter 01 natural sciences purl.org/becyt/ford/1 [https] PLASTIC DEFORMATION 0103 physical sciences [PHYS.COND.CM-DS-NN]Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn] [PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] Elasticity (economics) 010306 general physics ComputingMilieux_MISCELLANEOUS Condensed Matter - Statistical Mechanics Physics Condensed matter physics Statistical Mechanics (cond-mat.stat-mech) Energy landscape purl.org/becyt/ford/1.3 [https] Disordered Systems and Neural Networks (cond-mat.dis-nn) Condensed Matter - Disordered Systems and Neural Networks Amorphous solid Mean field theory [PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] Exponent Soft Condensed Matter (cond-mat.soft) [PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] Critical exponent |
Zdroj: | Physical Review Letters Physical Review Letters, American Physical Society, 2019, 123 (21), ⟨10.1103/PhysRevLett.123.218002⟩ CONICET Digital (CONICET) Consejo Nacional de Investigaciones Científicas y Técnicas instacron:CONICET |
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.123.218002⟩ |
Popis: | We consider a model of an elastic manifold driven on a disordered energy landscape, with generalized long range elasticity. Varying the form of the elastic kernel by progressively allowing for the existence of zero-modes, the model interpolates smoothly between mean field depinning and finite dimensional yielding. We find that the critical exponents of the model change smoothly in this process. Also, we show that in all cases the Herschel-Buckley exponent of the flowcurve depends on the analytical form of the microscopic pinning potential. This is a compelling indication that within the present elastoplastic description yielding in finite dimension $d\geq 2$ is a mean-field transition. 6 pages, 5 figures |
Databáze: | OpenAIRE |
Externí odkaz: |