MuPeG—The Multiple Person Gait Framework
Autor: | Rubén Delgado-Escaño, Francisco M. Castro, Nicolás Guil, Manuel J. Marín-Jiménez, Julián Ramos Cózar |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
gait framework
Computer science 0211 other engineering and technologies Extrapolation 02 engineering and technology lcsh:Chemical technology Machine learning computer.software_genre Biochemistry Article Analytical Chemistry Task (project management) gait recognition Gait (human) 0202 electrical engineering electronic engineering information engineering Humans lcsh:TP1-1185 Computer Simulation Electrical and Electronic Engineering Instrumentation Gait 021110 strategic defence & security studies business.industry gait dataset augmented dataset Atomic and Molecular Physics and Optics gait recognition gait framework gait dataset multiple subjects augmented dataset Pattern Recognition Physiological multiple subjects 020201 artificial intelligence & image processing Artificial intelligence business computer Algorithms |
Zdroj: | Sensors Volume 20 Issue 5 Sensors (Basel, Switzerland) Sensors, Vol 20, Iss 5, p 1358 (2020) |
ISSN: | 1424-8220 |
DOI: | 10.3390/s20051358 |
Popis: | Gait recognition is being employed as an effective approach to identify people without requiring subject collaboration. Nowadays, developed techniques for this task are obtaining high performance on current datasets (usually more than 90 % of accuracy). However, those datasets are simple as they only contain one subject in the scene at the same time. This fact limits the extrapolation of the results to real world conditions where, usually, multiple subjects are simultaneously present at the scene, generating different types of occlusions and requiring better tracking methods and models trained to deal with those situations. Thus, with the aim of evaluating more realistic and challenging situations appearing in scenarios with multiple subjects, we release a new framework (MuPeG) that generates augmented datasets with multiple subjects using existing datasets as input. By this way, it is not necessary to record and label new videos, since it is automatically done by our framework. In addition, based on the use of datasets generated by our framework, we propose an experimental methodology that describes how to use datasets with multiple subjects and the recommended experiments that are necessary to perform. Moreover, we release the first experimental results using datasets with multiple subjects. In our case, we use an augmented version of TUM-GAID and CASIA-B datasets obtained with our framework. In these augmented datasets the obtained accuracies are 54.8 % and 42.3 % whereas in the original datasets (single subject), the same model achieved 99.7 % and 98.0 % for TUM-GAID and CASIA-B, respectively. The performance drop shows clearly that the difficulty of datasets with multiple subjects in the scene is much higher than the ones reported in the literature for a single subject. Thus, our proposed framework is able to generate useful datasets with multiple subjects which are more similar to real life situations. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |