The Kato Square Root Problem on locally uniform domains

Autor: Moritz Egert, Sebastian Bechtel, Robert Haller-Dintelmann
Přispěvatelé: Technische Universität Darmstadt (TU Darmstadt), Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2019
Předmět:
Zdroj: Advances in Mathematics
Advances in Mathematics, Elsevier, 2020, 375, pp.107410. ⟨10.1016/j.aim.2020.107410⟩
ISSN: 0001-8708
1090-2082
DOI: 10.48550/arxiv.1902.03957
Popis: We obtain the Kato square root estimate for second order elliptic operators in divergence form with mixed boundary conditions on an open and possibly unbounded set in $\mathbb{R}^d$ under two simple geometric conditions: The Dirichlet boundary part is Ahlfors--David regular and a quantitative connectivity property in the spirit of locally uniform domains holds near the Neumann boundary part. This improves upon all existing results even in the case of pure Dirichlet or Neumann boundary conditions. We also treat elliptic systems with lower order terms. As a side product we establish new regularity results for the fractional powers of the Laplacian with boundary conditions in our geometric setup.
Comment: Minor changes during publication process
Databáze: OpenAIRE