Banach Synaptic Algebras

Autor: David J. Foulis, Sylvia Pulmannov
Rok vydání: 2017
Předmět:
Zdroj: International Journal of Theoretical Physics. 57:1103-1119
ISSN: 1572-9575
0020-7748
DOI: 10.1007/s10773-017-3641-y
Popis: Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Stormer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C*-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW*-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.
Databáze: OpenAIRE