Hydraulic differences along the water transport system of South American Nothofagus species: do leaves protect the stem functionality?
Autor: | Paula I. Campanello, Fabian Gustavo Scholz, Juan Enricci, Guillermo Goldstein, Sandra Janet Bucci, Fulton A Rockwell, Mylthon Jiménez-Castillo, Lía Montti, Pedro E. Guerra, Ludmila La Manna, Oscar Alberto Troncoso, Michele N Holbrook, Pablo Lopez Bernal |
---|---|
Rok vydání: | 2012 |
Předmět: |
VULNERABILITY TO CAVITATION
Physiology Hydraulics Otras Ciencias Biológicas Rain WATER RELATIONS Plant Science Biology Stem-and-leaf display law.invention Ciencias Biológicas purl.org/becyt/ford/1 [https] CONGENERIC SPECIES Magnoliopsida Soil Altitude Hydraulic conductivity Species Specificity law Botany Ecosystem purl.org/becyt/ford/1.6 [https] Nothofagus Water transport Plant Stems HYDRAULIC CONDUCTIVITY Temperature food and beverages Humidity Water Biological Transport South America biology.organism_classification Wood LEAF HYDRAULIC CONDUCTANCE Plant Leaves Agronomy CIENCIAS NATURALES Y EXACTAS |
Zdroj: | CONICET Digital (CONICET) Consejo Nacional de Investigaciones Científicas y Técnicas instacron:CONICET |
ISSN: | 1758-4469 |
Popis: | Hydraulic traits were studied for six Nothofagus species from South America (Argentina and Chile), and for three of these species two populations were studied. The main goal was to determine if properties of the water conductive pathway in stems and leaves are functionally coordinated and to assess if leaves are more vulnerable to cavitation than stems, consistent with the theory of hydraulic segmentation along the vascular system of trees in ecosystems subject to seasonal drought. Vulnerability to cavitation, hydraulic conductivity of stems and leaves, leaf water potential, wood density and leaf water relations were examined. Large variations in vulnerability to cavitation of stems and leaves were observed across populations and species, but leaves were consistently more vulnerable than stems. Water potential at 50 loss of maximum hydraulic efficiency (P50) ranged from-0.94 to-2.44MPa in leaves and from-2.6 to-5.3MPa in stems across species and populations. Populations in the driest sites had sapwood and leaves more vulnerable to cavitation than those grown in the wettest sites. Stronger diurnal down-regulation in leaf hydraulic conductance compared with stem hydraulic conductivity apparently has the function to slow down potential water loss in stems and protect stem hydraulics from cavitation. Species-specific differences in wood density and leaf hydraulic conductance (KLeaf) were observed. Both traits were functionally related: species with higher wood density had lower KLeaf. Other stem and leaf hydraulic traits were functionally coordinated, resulting in Nothofagus species with an efficient delivery of water to the leaves. The integrity of the more expensive woody portion of the water transport pathway can thus be maintained at the expense of the replaceable portion (leaves) of the stem-leaf continuum under prolonged drought. Compensatory adjustments between hydraulic traits may help to decrease the rate of embolism formation in the trees more vulnerable to cavitation. © 2012 The Author. Fil: Bucci, Sandra Janet. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia; Argentina Fil: Scholz, Fabian Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia; Argentina Fil: Campanello, Paula Inés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina Fil: Montti, Lia Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina Fil: Jimenez Castillo, Mylthon. Universidad Austral de Chile; Chile Fil: Rockwell, Fulton A.. Harvard University; Estados Unidos Fil: la Manna, Ludmila Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia "san Juan Bosco". Facultad de Ingeniería - Sede Esquel. Departamento de Ingeniería Forestal; Argentina. Provincia del Chubut. Centro de Investigación y Extensión Forestal Andino Patagónico; Argentina Fil: Guerra, Pedro. Universidad Nacional de la Patagonia "san Juan Bosco". Facultad de Ingeniería - Sede Esquel. Departamento de Ingeniería Forestal; Argentina Fil: Lopez Bernal, Pablo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia "san Juan Bosco". Facultad de Ingeniería - Sede Esquel. Departamento de Ingeniería Forestal; Argentina. Provincia del Chubut. Centro de Investigación y Extensión Forestal Andino Patagónico; Argentina Fil: Troncoso, Oscar Alberto. Universidad Nacional de la Patagonia "san Juan Bosco". Facultad de Ingeniería - Sede Esquel. Departamento de Ingeniería Forestal; Argentina Fil: Enricci, Juan. Universidad Nacional de la Patagonia "san Juan Bosco". Facultad de Ingeniería - Sede Esquel. Departamento de Ingeniería Forestal; Argentina Fil: Holbrook, Michele N.. Harvard University; Estados Unidos Fil: Goldstein, Guillermo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. University of Miami; Estados Unidos |
Databáze: | OpenAIRE |
Externí odkaz: |