Sharp inequalities for maximal operators on finite graphs, II
Autor: | José Madrid, Cristian González-Riquelme |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Journal of Mathematical Analysis and Applications. 506:125647 |
ISSN: | 0022-247X |
DOI: | 10.1016/j.jmaa.2021.125647 |
Popis: | Let $M_{G}$ be the centered Hardy-Littlewood maximal operator on a finite graph $G$. We find $\underset{p\to \infty}{\lim}\|M_{G}\|_{p}^{p }$ when $G$ is the start graph ($S_n$) and the complete graph ($K_n$), and we fully describe $\|M_{S_n}\|_{p}$ and the corresponding extremizers for $p\in (1,2)$. We prove that $\underset{p\to \infty}{\lim}\|M_{S_n}\|_{p}^{p }=\frac{1+\sqrt{n}}{2}$ when $n\ge 25$. Also, we compute the best constant ${\bf C}_{S_n,2}$ such that for every $f:V\to \mathbb{R}$ we have $Var_{2}M_{S_n}f\le {\bf C}_{S_n,2} Var_{2}f$. We prove that ${\bf C}_{S_n,2}=\frac{(n^2-n-1)^{1/2}}{n}$ for all $n\geq 3$ and characterize the extremizers. Moreover, when $M$ is the Hardy-Littlewood maximal operator on $\mathbb{Z}$, we compute the best constant ${\bf C}_{p}$ such that $Var_{p}Mf\le {\bf C}_{p}\|f\|_{p}$ for $p\in (\frac{1}{2},1)$ and we describe the extremizers. Comment: 23 pages |
Databáze: | OpenAIRE |
Externí odkaz: |