On the Brauer $p$-dimension of Henselian discrete valued fields of residual characteristic $p > 0$
Autor: | Ivan D. Chipchakov |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: | |
Popis: | Let $(K, v)$ be a Henselian discrete valued field with residue field $\widehat K$ of characteristic $p$, and Brd$_{p}(K)$ be the Brauer $p$-dimension of $K$. This paper shows that Brd$_{p}(K) \ge n$, if $[\widehat K\colon \widehat K ^{p}] = p ^{n}$, for some $n \in \mathbb{N}$. It proves that Brd$_{p}(K) = \infty $ if and only if $[\widehat K\colon \widehat K ^{p}] = \infty $. 26 pages, no figures. Final form: the content of the paper is the same as in the previous version; the titles of Sections 5 and 6 are changed because of the changes in the content of these sections, made in the previous version. To appear in J. Pure Appl. Algebra |
Databáze: | OpenAIRE |
Externí odkaz: |