The ring of real-valued multivariate polynomials: an analyst's perspective

Autor: Rudolf Rupp, Raymond Mortini
Přispěvatelé: Laboratoire de Mathématiques et Applications de Metz (LMAM), Centre National de la Recherche Scientifique (CNRS)-Université Paul Verlaine - Metz (UPVM), Fakultaet fuer Mathematik, Universität Ulm - Ulm University [Ulm, Allemagne], Douglas, Krantz, Sawyer, Treil, Wick
Rok vydání: 2014
Předmět:
Zdroj: The Corona Problem, connections between operator theory, function theory and geometry
The Corona Problem, connections between operator theory, function theory and geometry, Douglas, Krantz, Sawyer, Treil, Wick, 2012, Fields Instiute, Canada. pp.153-176, ⟨10.1007/978-1-4939-1255-1_8⟩
Fields Institute Communications ISBN: 9781493912544
DOI: 10.48550/arxiv.1402.4832
Popis: In this survey we determine an explicit set of generators of the maximal ideals in the ring $\mathbb R[x_1,\dots,x_n]$ of polynomials in $n$ variables with real coefficients and give an easy analytic proof of the Bass-Vasershtein theorem on the Bass stable rank of $\mathbb R[x_1,\dots,x_n]$. The ingredients of the proof stem from different publications by Coquand, Lombardi, Estes and Ohm. We conclude with a calculation of the topological stable rank of $\mathbb R[x_1,\dots,x_n]$, which seems to be unknown so far.
Comment: 20 pages; survey associated with a conference at the Fields institute
Databáze: OpenAIRE